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Abstract—The interdependencies within the global financial
system can cause ripple effects especially during crisis in a
process called contagion. We study contagion because the trans-
mission of shocks during a crisis can have a significant impact
on society and the global economy. We apply Stable Graphical
Models (SGM), a class of multivariate α-stable densities that can
be represented as Bayesian networks whose edges encode linear
dependencies between random variables. We are motivated by
the lack of a generalized and sufficiently flexible model that can
capture leptokurtic features exhibited in financial time series.
Using data from 24 developed and emerging countries between
2000 and 2023, we study the process of contagion across 6 crisis
and 7 tranquil periods. Our results show that the incidence of
contagion is more expressed during crisis periods, demonstrating
the model’s ability to identify and characterize the structural
relationship between random variables.

Index Terms—graphical models, Bayesian networks, α-stable,
finance, contagion

I. INTRODUCTION

During the global financial crisis (GFC) in 2008, the

connectedness between international markets exacerbated the

spread of shocks in the financial system, [1]. Given the

adverse impact of recession in the global economy, it has

become increasingly important to understand the channels

through which contagion is transmitted, the rate at which

the crises spread and the strategies to mitigate the impact

of external shocks [2]. Similarly, given the changing nature

of financial system and diverging domestic economic policies,

the search for better performing early warning signals to detect

contagion and predict crisis remain a timeless endeavour [30].

Thus, we seek to develop a graphical method that learns the

dependency structure of economic variables and exploit the

learned structure to understand the impact of a crisis and the

diffusion of shocks to other regions.

Reference [3] define contagion as “a significant increase in

cross-market linkages after a shock to one country (or a group

of countries)”. This restrictive definition suggests that shocks

transmitted to markets that are correlated during tranquil states

does not constitute contagion. Thus, the propagation of shocks

should intensify during periods of stress or crises. To evaluate

the existence of contagion, most methods rely on Granger

causality which measures the association between markets
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using correlation [3]. However, this approach is problematic

as it does not differentiate the transmitter and receiver of

a contagion since correlation measures the expectation of a

linear relationship.

Besides, existing approaches that rely on correlation can

be misleading since the heteroskedasticity in market volatility

biases the cross-market correlation particularly during periods

of abnormal extreme market movements [3]. This argument

is supported by [20] who showed that an increase in variance

implies a rise in the correlation. Moreover, correlation should

be used with caution particularly for nonlinear dependencies

or data series characterized by large fluctuations with power-

law tails [4]. Furthermore, correlation-based methods suffer

from identification problem since the direction of contagion

is established a priori. Our approach overcomes this bias by

learning the direction of the propagation of contagion using

Bayesian network models.

Several studies have emerged proposing different ap-

proaches to analyze contagion on fundamental and financial

data. For instance, [5], [6] and [7] apply Bayesian networks

to analyze contagion. While these methods have achieved

remarkable results, they depend on Gaussian assumptions to

learn the parameters of the Bayesian network model. However,

studies have shown that real world data such as stock returns

[8] are heavy tailed and can not be best described by a

Gaussian process. Therefore, it is essential to construct a

sufficient and flexible parameterized model to learn and fully

analyze contagion in financial system.

Given the above limitations, we utilize SGM [13] to analyze

contagion. Stable Graphical Models are multivariate α-stable

densities that can be represented as Bayesian networks. First,

this approach accounts for the heavy tailedness in the data,

making it more practical to real world scenarios. Second,

the proposed approach models asymmetry [32] that arises

from extreme market movements before performing complex

operations. Unlike OLS-based Gaussian graphical models,

we propose a robust method that can handle heteroscedastic

variance, captures non-linear dependencies and is less sensitive

to outliers. Finally, since the α-stable distribution is so heavy-

tailed that the second-order moments do not exist, we combine

lp−norm minimization with Minimum Dispersion Criterion

(MDC) to learn structural dependencies and regression coef-

ficients for multivariate α-stable densities.
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A. Bayesian Networks

Bayesian Networks are a class of graphical models that

allow for a representation of the probabilistic dependencies

between a given set of random variables, [9]. Given a set of

finite random variables X = {X1, X2, ..., XN}, a Bayesian

network B(G,Θ) is specified by directed acyclic graph (DAG)

G whose nodes denote random variables in X and a set of

parameters Θ = {θi|Xi ∈ X}, that determine the conditional

probability distribution p(Xi|Pa(Xi), θ) for Xi ∈ X given the

state of its parents Pa(Xi) ⊆ X \ {Xi} in G.

Bayesian Networks allow for the factorization of joint proba-

bility density of random variables as a product of the condi-

tional probability distributions as follows:

PB(X ) =

|X |∏
i=1

p(Xi|Pa(Xi), θ) (1)

To ensure that the factorization PB(X ) is well de-

fined, DAGs do not have self-loops and the dependence of

p(Xi|Pa(Xi), θ) on θi when learning Bayesian networks is

usually specified by an appropriately chosen family of param-

eterized probability densities. In this work we characterize the

dependency structure of a Bayesian network with multivariate

α-stable densities to model the random variables in X .

B. α-Stable Process

The univariate stable distribution is characterized by four

parameters, the index of stability α, the skewness parameter

β, the dispersion parameter γ and the location parameter δ,

where α ∈ (0, 2], β ∈ [−1, 1], γ ≥ 0 and δ ∈ R, [18]. Stable

distributions are motivated by the generalized Central Limit

Theorem, which states that stable laws are the only possible

limit distributions for properly normalized and centered sums

of independent, identically distributed random variables. Their

main drawback is that they do not have closed form solutions.

The most common parameterization for stable distribution is

defined by [14]: A random variable X is S(α, β, γ, δ) if it has

the following characteristic function:

E(expitX) =

⎧⎪⎪⎨
⎪⎪⎩
exp

(
−γα|t|α

[
1− iβ(tan πα

2 )(signt)

]
+iδt

)

exp

(
−γ|t|

[
1 + iβ 2

π (signt) ln |t|
]
+iδt

)
(2)

The first term holds when α �= 1 and the second term applies

to α = 1. The parameter α is a measure of the thickness of

the tails of the distribution and signt = 1 if t > 0, 0 if t = 0
or −1 if t < 0.

Our key contributions are summarized as follows:

• We apply SGM, a class of multivariate α-stable densities

that can be represented as Bayesian networks to study and

characterize the incidence of contagion in tranquil and

crisis periods. SGM are represented as directed-acyclic

graphs whose edges encode linear dependencies between

random variables.

• We extend SGM to include bidirectional contagion. This

generalization ensures that the transmission of shocks is

not only defined as propagated from ”ground zero”, but

allows it to happen from any mature financial market.

• We use a large data set and conduct extensive experiments

to discover the impact of crisis and the subsequent

incidence of contagion before and during crisis periods.

Given the devastating effects of crises to societies and

the global economy, this study is important in developing

strategies to mitigate the severe impact of crises.

• Among other findings, we note that contagion is more

expressed during crisis periods, and developing countries

are more susceptible to shocks than developed countries.

II. METHODOLOGY

A. Stable Graphical Models

We let B(G,Θ) be a Bayesian graphical model where

G = (V, E) is the directed-acyclic graph specified by V
vertices and E edges. The elements of E , that is, ei,j describe

the parent-child relationship between the random variables

Xi and Xj . The random variables X = {X1, X2, ..., XN}
where N is the total number of nodes are distributed accord-

ing to a multivariate α−stable distribution with parameters

θ = {α, β, γ, δ}.
Contagion: We model contagion as dependencies on a

SGM where the coefficients of contagion can be interpreted

as the regression coefficients of the α-stable noise random

variable. Our specification of the problem is closely related

to [5] but our approach differs from theirs in several ways.

First they assume the random variables in X to be normally

distributed and apply undirected Gaussian graphical model

which further assumes a stationary data generating process.

Second, they defined contagion in terms of partial correlation,

such that eij denotes the correlation between Xi and Xj .

In this work, we model the random variables in X with a

multivariate α-stable distribution to capture the leptokurtic

features in the data.

The directed acyclic graph G consist of V ×V vertices, and

each node represents a country Xi under study. The features

of each node are given by Xi’s stock market return. The

SGM’s approach to network selection and parameter learning

is designed to handle joint estimation and large scale multiple

testing problems for heavy tailed data, without imposing

Gaussian restrictions on the data generating process.

SGM B(G,Θ) can be defined as a probability distribution

over X such that:

Zj = Xj −
∑

Xk∈Pa(Xj)

wjkXk ∼ S(α, β, γ, δ) (3)

Zj is a noise random variable independent of Zk if Zj �=
Zk, ∀Xj ∈ X , where Pa(Xj) ⊆ X \ {Xj} are parent nodes

of Xj in the directed acyclic graph G, and the distribution of

the parameters is represented as follows:

wjk ∈ R,Wj = {wjk|Xk ∈ Pa(Xj)} (4)

θj = {α, βj , γj , δj} ∪Wj , (5)

Θ = {θi|Xi ∈ X} (6)
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While SGM yield directed acyclic graphs, it is common

in the study of contagion to have mutual spill-over effects

between two financial markets. For example, [21] studied the

impact of Covid-19 on stock markets and concluded that the

pandemic had bidirectional spill-over effects between Asian

countries and European and American markets. To account for

this behaviour, we generalized the SGM by adding reversing

edges when searching for the ordered graph during structure

learning.

The goal for learning the structure of a Bayesian network

is to determine the optimal topology that best mirrors the

dependencies between random variables. Despite extensive

research in this field, learning the structure of a Bayesian

network has been proven to be NP hard [22], and the search

space for DAG increases exponentially as the number of nodes

increases [9].

B. Estimating Contagion

Decomposing contagion as a multivariate α-stable Bayesian

network problem is a challenging and important task since α-

stable distribution does not have closed form solution, and the

tails are so heavy that the moments do not exist. Therefore,

estimating the joint distribution of the random variables using

maximum likelihood can be computationally demanding. We

use MDC [12], a tractable scoring method to select the optimal

DAG network.

Formally, given a data set D = {D1, D2, ..., DN}, MDC

selects the Bayesian network that maximises the score SMDC

over the space of all DAG G, and Θ parameters:

SMDC(B|D) = −
∑

Xi∈X

{
N

logγi
α

+
|Pa(Xi)|

2
logN

}
(7)

where γi is the dispersion parameter. It is important to note

that MDC score does not depend on the probability density

function of α-stable distribution, making the computation

more efficient. The goal of parameter learning in Bayesian

networks is to determine each conditional distribution for

a given network. Estimating the dispersion parameter, γ, is

performed using Iteratively Re-weighted Least Square (IRLS)

algorithm [16] via lp− norm minimization1.

More generally, [14] stated that for symmetric α-stable

distribution, the dispersion of the random variable Z is related

to its moments using the following equation:

E(|Z|p) = C(p, α)γp/α,−1 < p < α (8)

In our setting, Z represents noise variables, and minimizing

the dispersion of Z is equivalent to minimizing the p−th order

moment:

argmin
1

α
log γj ≡ argmin‖Zj‖p (9)

≡ (
N∑

λ=1

|Zj,λ|p)1/p,−1 < p < α (10)

Let Wj be the regression coefficients such that Wj =
{wjk|Xk ∈ Pa(Xj)}. We define γj(Wj) to denote the

dispersion parameter of the distribution of Zj = Xj −
1The algorithms, data and all supplementary results and materials are

available from authors upon request.

Fig. 1. The graph show the evolution of MSCI global indices. We normalized
the prices to the same scale of 100 to make it visually possible to compare
the time series across different countries.

∑
Xk∈Pa(Xj)

wjkXk, then the MDC selects regression param-

eters:

W ∗
j = argmin

1

α
log γj(Wj) (11)

W ∗
j = argmin log

(‖Zj‖p
)≡ argmin log

(( N∑
λ=1

|Zj,λ|p
)1/p)

(12)

Thus, the coefficient of contagion corresponds to the

MDC-based regression coefficient W ∗
j . The SGM combines

ordering-based search [17] for structure learning with IRLS

to learn the regression parameters. For learning regression

coefficients during structure learning, IRLS was implemented

with p = α/1.01.

III. DATA

Studies on contagion use stock market data to represent co-

movements between markets in the financial system [10]. We

obtained the data from Bloomberg which comprise of global

stock market indices of 24 developed and emerging countries

produced by Morgan Stanley Capital International (MSCI).

Figure 1 shows the evolution of MSCI global indices from

2000 to 2023.

In our experiments, we use the return of the indices calcu-

lated as:

Xi = log

[
Pt

Pt−1

]
(13)

where Xi is the weekly return for country i, Pt is the closing

price for week t and Pt−1 is the closing price corresponding

to week t− 1.

A. Tranquil and Crisis Periods

We define crisis periods based on news analysis and previ-

ous literature [7]. We refer to non-crisis moments as tranquil

periods. In total, 6 periods of crisis and 7 tranquil periods

were discovered. We aim to study the incidence of contagion

among global financial markets since understanding the impact

of contagion will assist policy makers to be more effective in

dealing with global systemic risk [31].
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(a) Tranquil (b) Crisis

Fig. 2. Heatmap of the learned MDC-based coefficients capturing cross-
country movement of shocks for the 2008 crisis.

IV. RESULTS AND DISCUSSION

We display the heatmap of the MDC-based coefficients

corresponding to the 2008 tranquil and crisis periods in Figure

2. To emphasize the most important values, we scaled the

coefficients using (Xi − μi)/σi, where Xi is a V × V matrix

of coefficients, μi and σi are mean and standard deviation

for row i, respectively. In Figure 3 we create a conservative

graphical model to view high level structural topology of the

learned network with q = 0.10, where q denotes a threshold

value of the coefficients. We note a discernible pattern in the

heatmaps, where the tranquil periods exhibit cooler colors,

indicating smaller values and fewer connections. In contrast,

the heatmaps for crisis periods appear significantly brighter,

suggesting a greater prevalence of stronger connections.

A. Tranquil vs Crisis Periods

Analysis of results show that there is evidence of cross-

country contagion before and during the crisis. More specif-

ically, we note that the edge density increases during crisis

compared to tranquil times. Our model is able to show that

there is a significant increase in global cross-market linkages

during crisis [3], and that the severity and impact of the

contagion is reinforced during crisis. This is expected since

asymmetric information across active economic agents can

cause excessive spillovers in financial systems [23]. Across

various tranquil and crisis periods, our analysis reveal that

not only do Asian financial markets exhibit a higher de-

gree of integration, but European markets also show notable

interconnectedness. These results demonstrate that our pro-

posed SGM yields reliable regression coefficients to capture

the dependency structure between random variables, which

clearly distinguish tranquil from crisis periods. Additionally,

the learned Bayesian network shows that geographic proximity

is key in passing on systemic risk during crisis. Our findings

corroborate the work of [24], [25] and [11] who studied the

effect of geographical distance on stock market correlation and

arrived at the same conclusion.

B. Mean Regression Coefficients

When studying systemic risk, it is important to com-

pare contagion in tranquil versus crisis periods to de-

termine whether the transmission of shocks during crisis

(a) Tranquil (b) Crisis

Fig. 3. The graphs show the learned graphs for the 2008 global financial
crisis with q = 0.1

(a) Tranquil vs Crisis (b) Box plot

Fig. 4. Comparative results for (a) Overall tranquil vs crisis periods aggre-
gated for all countries, and (b) Box plot

caused significant cross market linkages. Let MRCC =

1/K
∑K

k=1(1/N
∑N

i=1 X
(k)
i ) denote the average for mean

regression coefficients for crisis period, where K represents

a set of all crisis periods, X
(k)
i is the i-th row of the k-th

matrix in the crisis set and N is the number of rows in each

V×V matrix of coefficients. Using the same approach, we also

compute MRCT for tranquil periods and Figure 4 displays

the comparative results. Despite showing a relatively similar

pattern, we note that the average of mean coefficients during

crisis are generally higher than tranquil periods as shown on

the box plot. This shows that our method can characterize

market volatility for tranquil and crisis periods successfully,

with tranquil expected to have lower volatility as denoted by

smaller regression coefficients compared to crisis periods.

C. The Impact of Contagion: Node Centrality

So far, the results show that our approach can detect con-

tagion and identify the direction of its propagation, measure

the systemic importance of countries to others, and quantify

the transmission of shocks. Our results further express that

systemic risk depends on the connectedness and interaction

between financial markets [26]. This highlights the importance

of centrality in determining the degree of connectedness within

the network in the sense that a shock to a central node has the

potential to transmit contagion to the rest of the nodes in the

network [27]. We measure centrality of a node by the number

of common neighbors for node pairs in the network. Figure 5

reports the results of centrality for tranquil and crisis periods.

The higher the centrality, the more interconnected the nodes

are in the network.

Results show that on average, the highest number of node

pairs has about 5 common neighbors. There are about 400

node pairs with 5 common neighbors. This is significantly
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Fig. 5. Centrality: Number of common neighbors of two node pairs in the
network.

(a) α (b) β

Fig. 6. Results of α and β parameters across the first 6 tranquil and crisis
periods

larger as any shocks in the node pairs has the potential to

impact 5 other nodes, and the average number of neighbors

for the learned networks is 10. Our proposed method shows

that while tranquil and crisis periods demonstrate similar trend,

further analysis reveal that crisis periods are characterized by a

higher number of shared neighbors for different pairs of nodes

in the graph, indicating that the potential to transmit contagion

during crisis is relatively high.

D. Analysis of Model’s Parameters

In this section, we provide a brief overview of the param-

eters of the SGM and how they relate to crisis or contagion.

We focus on α, β and γ.

Heavy-tailed behaviour, α: The parameter α is responsible

for the heavy-tailed property of the distribution. This parame-

ter was estimated using the method of log-statistics [15]. When

α = 2, the α-stable distribution is a Gaussian distribution with

mean δ and variance 2γ2. During experiments, we conducted

5 fold bootstrap replicates and estimated the final value as

α = 1/N
∑N

i=1 αi, where N is equal to 5. We separate our

analysis into equal number of tranquil and crisis periods and

Figure 6(a) shows a comparison of the results.

We note a few observations. First, the results clearly show

the prevalence of fat tails in the financial series in both

states. Second, the distribution of tail in α-stable distribution

is a power function since α < 2. More importantly, this

demonstrates that the probability of extreme events such as

crisis occurring is very high. These observations suggest that

the use of a heavy tailed model like ours is necessary to capture

leptokurtic features in data.

(a) log γ: Country level (b) log γ: Period level

Fig. 7. Results of log γ at country and period levels.

Skewness, β: The skewness parameter was estimated for all

countries in the study. We compare the average skewness at

country and period level, and report the results in Figure 6(b).

Results show that stock returns are heavily skewed and our

proposed method captures this aspect in the data, unlike most

econometric models that adopt Gaussian properties [5].

Dispersion, log γ: We maximize the MDC-score to obtain

the optimal network since it was found to outperform other

baseline model selection criteria [28]. The MDC-based score

depends on the dispersion parameter, γ, which plays a role

analogous to the variance. Additionally, regression coefficients

are estimated using the connection between lp−norm of the

stable noise random variable and the dispersion parameter

γ. We compute node specific γ as log γ = 1/|X |∑i log γi
and report the averaged results in Figure 7. Results show

that developed countries such as France, UK, Canada and

US which transmit most of the shocks tend to have relatively

low dispersion while developing countries including China,

Mexico and Brazil which receive most of the shocks (and have

a high standard deviation) experience the highest dispersion.

These findings raise interesting questions as they suggest that

developing economies are more susceptible to international

financial crisis than developed countries [29].

E. Network Evaluation: Edge Concentration and Density

Edge concentration is important to understand the degree

of network equality on the learned graphs. Figure 8 reports

the Lorenz curve associated with the number of edges in

the network. The 45 degree line represents the degree of

equality for edge distribution. We plot population percentile

of countries against their cumulative number of learned edges.

The plot shows that there is a moderate degree of network

equality for both tranquil and crisis periods. Thus, the top

50% vertices account for roughly 50% of the interconnections

in the network in both periods. This shows that our proposed

approach performs well at learning the distribution of edges

within the network.

Furthermore, we study the edge density of the learned

graphs and plot the findings in Figure 8(b). The number of

learned edges is slightly higher during crisis relative to tranquil

periods. This is consistent with our previous findings during

crisis which show the prevalence of stronger connections on

the heatmap (Figure 2), generally higher values of mean

regression coefficients (Figure 4) and higher dispersion (Figure
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(a) Lorenz curve (b) Edge density

Fig. 8. Lorenz curve and edge density plots determine the quality and density
of graphs learned

7). These findings demonstrate that the incidence of contagion

in international financial markets is reinforced during crisis,

and policy makers should consider mitigating strategies to

reduce its negative impact [19].

V. CONCLUSIONS

In this work we have proposed Stable Graphical Models

to investigate the incidence of contagion in global financial

markets. We modeled contagion as linear dependencies in a

Bayesian network. The study was conducted on 24 developed

and emerging countries across tranquil and crisis periods

from 2000 to 2023. Results demonstrate that the incidence of

contagion increased during crisis when compared to tranquil

periods, demonstrating our proposed model’s ability to param-

eterize and learn structural relationships in data. Since this

paper addresses the effects of crisis which is a latent variable,

future research may focus on investigating the channels and

the rate at which crisis spread.
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