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Abstract—Current machine learning-based Alzheimer’s dis-
ease (AD) diagnosis methods fail to explore the distinctive brain
patterns across different AD stages, lacking the ability to trace
the trajectory of AD progression. This limitation can lead to an
oversight of the pathological mechanisms of AD and suboptimal
performance in AD diagnosis. To overcome this challenge, this
paper proposes a novel stage-aware brain graph learning model.
Particularly, we analyze the different brain patterns of each
AD stage in terms of stage-specific brain graphs. We design
a Stage Feature-enhanced Graph Contrastive Learning method,
named SF-GCL, utilizing specific features within each AD stage
to perform graph augmentation, thereby effectively capturing
differences between stages. Significantly, this study unveils the
specific brain patterns corresponding to each AD stage, showing
great potential in tracing the trajectory of brain degeneration.
Experimental results on a real-world dataset demonstrate the
superiority of our model.

Index Terms—Alzheimer’s disease, graph contrastive learning,
brain graphs, feature extraction, brain disease detection

I. INTRODUCTION

Alzheimer’s disease (AD) stands out as one of the most

severe neurodegenerative disorders, leading to dementia in the

aging population [1]. According to the statistical data released

by the World Health Organization (WHO), the number of

worldwide AD patients has reached 55 million. To ensure

effective and timely treatment, research on AD diagnosis

and prediction is crucial. Notably, AD is a staged disease,

encompassing several intermediary stages between the healthy

state (e.g., normal control) and AD [2], [3]. For example, mild

cognitive impairment (MCI) is one of the transitional stage of

AD. It is worth noting that brain characteristics, especially the

features of brain functions, would be distinct at different stages

of the disease [4]. Therefore, studies focusing on AD diagnosis

and prediction emphasize stage-specific analysis, such as early

AD diagnosis [5].

Recently, various Artificial Intelligence (AI) and machine

learning techniques (e.g., graph learning [6], [7]) have shown

their effectiveness in AD detection [8]–[11]. However, most

current methods fail to explore the distinctive brain patterns

across different AD stages, therefore lacking the ability to trace

the trajectory of disease progression. Particularly, the failure to

capture stage-specific features and differences between stages
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can result in a decrease in model performance for both disease

diagnosis and prediction tasks.

To address this issue, this paper proposes a novel stage-

aware brain graph learning model, exploring the differences

across AD stages. In this study, we initially construct a

Brain Graph (BG) for each subject based on the information

extracted from neuroimage data, such as functional magnetic

resonance imaging (fMRI) data and diffusion tensor imaging

(DTI) data. In a BG, each node represents a brain region

of interest (ROI), and each edge indicates the connectivity

between two ROIs. Then, we present a Stage Feature-enhanced

Graph Contrastive Learning (SF-GCL) method, distinguishing

the BGs of subjects at different AD stages. Particularly, in SF-

GCL, we design a stage-based graph augmentation approach,

which first extracts the specific features within each AD stage

and then utilizes these features to enhance the corresponding

BGs, revealing the differences between AD stages.

Significantly, this paper provides insight into the patholog-

ical mechanisms of AD, exploring the specific brain patterns

of each AD stage. Moreover, our model has the potential to

predict the trajectory of brain degeneration, contributing to

the formulation of effective therapeutic strategies aimed at

mitigating the progression of AD. The main contributions of

this paper are as follows:

• This paper proposes a new stage-aware brain graph learn-

ing model, which reveals the specific brain patterns across

different AD stages, effectively tracing the trajectory of

AD progression.

• We design a Stage Feature-enhanced Graph Contrastive

Learning (SF-GCL) method, leveraging specific features

within each AD stage for graph augmentation and cap-

turing differences between stages.

• Experiments conducted on a real-world dataset demon-

strate the superiority of the proposed model.

II. THE PROPOSED SF-GCL

A. Problem Definition

This paper considers the problem of stage-aware brain graph

analysis. Given a subject dataset S = {(Gi, yi)}Mi=1, where Gi

indicates the BG of i-th subject and yi ∈ Y is the correspond-

ing disease label, M denotes the total number of subjects.
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Notably, each BG is constructed based on the connectivities

of Regions Of Interest (ROIs). Each BG is a weighted graph,

denoted as Gi = (V,Ei,Ai), here V = {vj}Nj=1 is the node

set of size N , Ei incidates the edge set of Gi, and Ai ∈ R
N×N

represents the weighted adjacency matrix. Note that the node

set V is the same across subjects. The node feature matrix

of Gi is Xi = [xi1, xi2, ..., xi
N ]T, where xi

j ∈ R
D indicates the

vector of node vj in Gi.

Suppose all the BGs, {G1, G2, ..., GM}, can be divided into

K groups, each of which represents one stage of AD, the goal

of this paper is to extract shared features within each stage,

called stage features. Formally, for stage k, extracting the stage

features Fk from all the group members {G1
k, G

2
k, ..., G

m
k },

where m is the number of BGs in stage k. Then, the stage

features are utilized for graph augmentation, embedding BGs

into stage-specific spaces.

B. Stage Feature-enhanced Graph Contrastive Learning

In this section, we introduce the proposed SF-GCL method

(shown in Fig. 1) in detail. Particularly, SF-GCL contains

two main modules: stage-based graph augmentation and con-

trastive objective strategy.

1) Stage-based Graph Augmentation: A classic graph con-

trastive learning (GCL) model randomly generates two views

of the input graph for the subsequent training process [12],

[13] . Compared to other GCL models, SF-GCL employs a

unique stage-based graph augmentation approach to obtain two

stage-enhanced views of an input graph. Specifically, we first

extract the stage features of each AD stage, then we utilize

the extracted stage features to enhance the representations

of corresponding input graphs, obtaining two stage-enhanced

views of each graph.

Stage Feature Extraction. This module is designed to ac-

quire the stage features of each AD stage. We assume that BG

features exhibit variabilities across different AD stages, con-

tributing to the differentiation of disease stages. Particularly,

to prevent noise interference, we first eliminate the common

features (such as features remaining the same across all the

stages) of all the subjects to amplify the distinctions between

stages. Afterward, the stage features {Fk}K1 are captured using

the singular value decomposition (SVD) [14], which is known

for its effectiveness in dimensionality reduction and essential

feature extraction based on selected top singular values.

Given a set of BGs {G1, G2, ..., GM}, the common features

shared by all the subjects are defined as F̂. We determine

whether the attributes on each dimension are shared among

all subjects by assessing their commonality. The attributes

with high commonality are used to form the common features.

To evaluate the commonality of each attribute and learn the

common features of all subjects, we take advantage of SVD:

F̂ = SVD(X ), (1)

where X = {X1,X2, ...,XM} is the node features of all

the M subjects. SVD(·) stands as the SVD operation. We

sort out node features and perform the SVD operation sep-

arately for each node to assess the commonality of their

attributes. Then, we obtain common features F̂ by selecting

the attributes on both high and low-ranked dimensions of

left singular matrices, indicating they have high commonality.

Afterwards, we eliminate the common features existing in the

node features of all the BGs by removing these attributes

from the original node feature vectors. Thereby, we can obtain

a modified node representation for each BG, denoted as

X̃
i
= [x̃i

1, x̃i2, ..., x̃i
N ]T, x̃i

j ∈ R
D′

, where D′ is the modified

dimension of node feature vectors.

Furthermore, we also perform SVD operation with the mod-

ified node representations of BGs at different disease stages.

For stage k with m subjects, the modified node representations

of BGs are denoted as {X̃
1

k, X̃
2

k, .., X̃
m

k }. Our goal is to extract

the stage-specific features of stage k, formulated as:

Fk = SVD([X̃
1

k, X̃
2

k, . . . , X̃
m

k ]). (2)

After K iterations, we can obtain the stage features {Fk}K1 ,

each of which corresponds to a specific AD stage. These are

then used to improve the effectiveness of graph augmentation.

Graph Augmentation. The goal of graph augmentation

is to generate two graph views by modifying the structural

information without affecting the semantic labels of the input

graphs [15]. Unlike many existing methods that rely on uni-

form data augmentation schemes, such as randomly node drop-

ping, edge perturbation, and subgraph sampling, we introduce

the stage feature-based strategy into our graph augmentation

schemes. Inspired by Zhu et al. [16], who propose GCA (graph

contrastive learning with adaptive augmentation) to adaptively

augment the edge and node attributes of input graphs, this

work adopts a stage-based graph augmentation module. Our

feature masking strategy masks a fraction of less crucial

attributes in node features. In particular, we assume that the

stage features stand as important attributes, which should be

retained.

To measure important attributes, for node vj , a stage weight

vector wj = xj � Fk,j , which is accessed by stage features,

is assigned to each attribute of the node feature vector xj .

Here, � is the element-wise multiplication, Fk,j indicates the

stage feature vector of node vj . Essentially, attributes with

higher stage weight values are deemed more informative and

crucial. Consequently, during the augmentation process, these

attributes will have a lower probability of being masked. In

order to unify the value of probability, we apply a normaliza-

tion based on the stage weights. For u-th dimension of node

vj , we calculate the probability as:

puj = min

(
α · lnw

max
j − lnwu

j

lnwmax
j − lnwμ

j

, pt

)
, (3)

where α is a hyperparameter to adjust the magnitude of feature

augmentation, wmax
j and wμ

j are the maximum and the average

weight values of all dimensions in node vj , and pt is the

limitation of the highest probability.

Afterwards, for node vj , the attribute augmentation strat-

egy leverages a random vector bj ∈ {0, 1}D′
where each

dimension is described by a Bernoulli distribution, such as
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Fig. 1. The overview of SF-GCL.

buj ∼ Bernoulli(1−puj ). Thereby, for Gi, the generated node

features are computed by:

X̂
i
= [x̃i

1 � b1, x̃i2 � b2, . . . , x̃i
N � bN ]T. (4)

Finally, two augmented graph views Ĝi
1, Ĝi

2 can be generated

by performing our stage-based graph augmentation strategy.

2) Contrastive Objective Strategy: The contrastive objec-

tive is formulated to maximize the mutual information between

node embeddings and a global summary embedding [17].

Specifically, the purpose of the strategy is to distinguish the

embeddings of the same node in two different views from

those of other node embeddings. The node features are fed

into a graph neural network-based view encoder network f(·)
to generate embeddings containing both structure and attribute

information in the views, denoted as Z ∼ f(Ĝi). For any node,

we designate its embedding zi,n as an anchor point in one

view, and its embedding in another view as a positive sample.

Naturally, embeddings of other nodes in these two views are

treated as negative samples. We adopt the InfoNCE [18] loss

as the contrastive loss function, defined as:

L = −E

[
log

e(h(zi,1,zi,2))

Σ
j �=i

e(h(zi,1,zj,1)) + Σ
j �=i

e(h(zi,1,zj,2))

]
, (5)

where h(·) is a score function that measures the similarity

between two representations. In the denominator, the left part

represents the sum of intra-view negative pairs, while the

right part signifies the sum of inter-view negative pairs. The

theoretical optimization objective is to minimize the value of

the contrastive loss L, which is equivalent to maximizing a

lower bound on the mutual information between positive pairs

of views.

TABLE I
CLINICAL AND DEMOGRAPHIC INFORMATION OF SUBJECTS IN ADNI

DATASET.

Stage Number Age Range Age Statistics MMSE CDR
NC 211 57-93 72.8±8.3 28.9±1.7 0.2±0.8
MCI 195 49-96 72.8±7.9 27.6±2.2 1.6±1.2
AD 54 55-89 75.5±7.0 22.4±2.8 4.7±2.0

III. EXPERIMENTS

A. Datasets

The data utilized in this study is sourced from the AD

Neuroimaging Initiative (ADNI)1 database, including various

neuroimaging data (e.g., DTI and fMRI). Based on the col-

lected DTI and fMRI data from ADNI, we construct BGs by

computing the Pearson Correlation Coefficient between ROIs.

The collected dataset comprises a total of 460 subjects, cat-

egorized as normal control (NC) (m = 211), MCI (m = 195),

and AD (m = 54), carefully matched for both age and sex

ratio. The subjects, ranging from 49 to 96 years old, willingly

undergo all testing procedures, and participate in longitudinal

surveys. Table I summarizes the number of subjects in each

group along with their corresponding scores on the mini-

mental state examination (MMSE) and clinical dementia rating

(CDR), which are used to assess cognitive function and the

severity of AD. Scores of MMSE range from 0 to 30, with

higher scores indicating better cognitive function. The CDR is

typically employed to evaluate the severity of dementia, where

0 signifies normal, 1 denotes mild dementia, 2 indicates mod-

erate dementia, and 3 represents severe dementia. Particularly,

we conduct experiments for graph classfication task based on

1https://adni.loni.usc.edu/
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the DTI data of all 460 subjects, and the fMRI data of 195
MCI and 54 AD subjects is collected for graph clustering task.

B. Results

To assess the effectiveness of SF-GCL, we conduct graph

classification and graph clustering tasks based on DTI and

fMRI data, respectively. Fig. 2 shows the accuracy and F1

score of graph classification task on DTI data. Comparing with

GCA model, which ignores AD stage features, the accuracy

of SF-GCL improves about 3.43%, achieving 60.00± 2.48%.

In addition, the F1 score of SF-GCL is about 2.80% higher

than GCA, with 58.33± 1.52%. For graph clustering task, we

mainly distinguish two different AD stages (MCI and AD)

based on fMRI data. Fig 3 visualizes the graph clustering

result, showing that our model accurately maps BGs to stage-

specific spaces.

Fig. 2. The accuracy and F1 score of graph classification task on DTI data.

Overall, the experimental results demonstrate that our model

excels in capturing the non-linear relationship between input

features and target variables. In both graph classification and

graph clustering tasks, SF-GCL shows its superiority in dis-

tingushing different AD stages. These findings further affirm

the outstanding performance of our model in highlighting

the specific brain patterns across AD stages, providing robust

support for tracing the trajectory of AD progression.

Fig. 3. Graph clustering result on fMRI data.

IV. CONCLUSION

This paper proposes a new stage-aware brain graph learning

model to anaylze different brain graphs across AD stages.

Particularly, we present a Stage Feature-enhanced Graph Con-

trastive Learning method (SF-GCL), where AD stage fea-

tures are extracted to perform graph augmentation, thereby

effectively capturing differences between AD stages. Then,

we conduct experiments on a real-world dataset for graph

clustering and graph classification tasks. Experimental results

show the superiority of our model, and highlight its potential

in tracing the trajectory of brain degeneration. Future work

could expand to a more comprehensive classification of AD

stages, such as further subdividing MCI into early-stage and

late-stage categories to facilitate a more precise tracking of

the disease.
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