
Stay Tuned! Analysing Hyperparameters of a
Wide-Kernel Architecture for Industrial Faults

Dan Hudson
Semantic Information
Systems Group (SIS)
Osnabrück University
Osnabrück, Germany

daniel.hudson@uos.de

Jurgen van den Hoogen
Semantic Information
Systems Group (SIS)
Osnabrück University
Osnabrück, Germany

jurgen.vandenhoogen@uos.de

Stefan Bloemheuvel
Tilburg University, CSAI
Jheronimus Academy of
Data Science (JADS)

Tilburg, The Netherlands

s.d.bloemheuvel@jads.nl

Martin Atzmueller
Osnabrück University / SIS
German Research Center for
Artificial Intelligence (DFKI)
Osnabrück, Germany

martin.atzmueller@uos.de

Abstract—The performance of a deep learning model
depends heavily on its architectural hyperparameters.
However, there is often little guidance on how to tune
those hyperparameters. This paper provides insights into
how to tune the architectural hyperparameters of a wide-
kernel convolutional model for industrial fault detection,
by analysing a grid search over 12,960 possible combi-
nations of hyperparameter settings on seven benchmark
datasets of vibration time series. By aggregating the
results on these seven datasets, we are able to generalise
across multiple industrial fault detection settings. We find
that, generally speaking, the number of filters in the later
convolutional layers and the hyperparameters associated
with the first layer are the most important. Additionally,
we analyse the relationships between hyperparameters
and develop this analysis into a ‘recommended sequence’
for how to tune them one-at-a-time.

Index Terms—deep learning, convolutional neural net-
works, hyperparameter analysis, time series classifica-
tion, industrial fault detection, bearing fault detection

I. INTRODUCTION

Deep learning models have succeeded at many

time series analysis problems within industry, such

as monitoring vibrations to see when a machine is

likely to break down [1]–[3]. However, it is not easy

to tell beforehand which hyperparameter settings are

necessary for a model to be successful in a given use-

case. As a result, users can be left frustrated because

their deep learning model is not working and they do

not know why, or what to try next. To tackle this issue,

we present an extensive exploration of how to tune

the hyperparameters of the wide-kernel convolutional

neural network (WK-CNN) derived from [2], [4],

[5] for industrial fault detection. The relatively few

hyperparameters and state-of-the-art performance of

this architecture make it an ideal choice for this study.

We demonstrate an analysis method to identify

important hyperparameters, their pairwise interactions,

and preferred choices for tuning hyperparameters se-

quentially. Specifically, a grid search over 12,960

hyperparameter combinations tells us which settings

perform well and which ones perform poorly. This

paper analyses the results after applying our grid

search process to seven benchmark datasets in the field

Grid search
Kernel Size

Layer 1
Stride

Layer 1 ... Accuracy on
CWRU (%)

Accuracy on
Paderborn (%) ...

128 8 ... 80 80 ...

256 8 ... 75 90 ...

CWRU dataset
Paderborn dataset

XJTU dataset

WK-CNN architecture
Kernel Size Layer 1 ∈
[16, 32, 64, 128, 256]

Hyperparameters

Stride Layer 1 ∈ [4, 8, 16]
...

Insights

1

2

3

4

5

Analysis:
Which hyper-
parameters
matter the

most?

Analysis:
How do hyper-

parameters
impact one
another?

Analysis:
What is the

best order to
tune hyper-

parameters?

Datasets

6

Fig. 1: Analysis workflow.

of fault detection, which extends the coverage of our

previous analysis executed in [5]. We use the results

to reach insights regarding how to effectively tune

a wide-kernel architecture, when applied to vibration

data from new industrial sources, e. g., with different

machinery and sensor setup. Figure 1 depicts the full

analysis workflow. By answering the questions posed

in step 5, we make three contributions: (1) We identify

which hyperparameters are most important for WK-

CNN accuracy generally. (2) We analyse pairwise

interactions between hyperparameters. (3) Based on

empirical investigations, we concretely recommend an

order in which to tune hyperparameters sequentially.

The rest of the paper is organised as follows: Sec-

tion II discusses related work. Next, Section III intro-

duces the applied wide-kernel architecture, hyperpa-

rameter search setup, and the used datasets. Section IV

presents our methodology before discussing the results

in Section V. Finally, Section VI concludes with a

summary and interesting options for future work.

1347

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00240

II. RELATED WORK

Fault detection in rotating industrial equipment

is crucial for preventing breakdowns [6], and has

changed drastically with the rise of the Industrial

Internet of Things (IIoT) combined with data-driven

analysis techniques [7], [8]. These methods do not

require in-depth knowledge about the technical com-

ponents of industrial machinery, enabling automated

processing and automated adaptation to changing op-

erational environments.

In typical industrial contexts, time series data is

gathered from sensors measuring vibrations within the

machinery under different operating conditions. How-

ever, traditional Machine Learning (ML) methods like

K-NN [9], [10], Random Forest [11] and SVM [12],

[13] are not able to process the raw time series data

directly, therefore requiring extensive feature extrac-

tion. These obstructions in fault detection led to the

development of automated learning techniques, i.e.,

Deep Learning specifically for time series.

Initially, a multilayer perceptron (MLP) was a com-

mon approach for this task [14]. However, its limited

depth due to computational constraints led to the

adoption of recurrent neural networks (RNNs), which

are effective for time series data because of their

ability to model temporal dependencies [15], [16].

However, due to the high sampling frequencies of

vibration sensors, these RNNs were still computa-

tionally too costly. Therefore, the adoption of one-

dimensional convolutional neural networks (CNNs),

that are able to process time series effectively became

more popular [7], [8], [17]–[19], showing state-of-the-

art performance in fault detection. Especially utilising

a wide-kernel in the first convolutional layer seemed

to yield increased performance [1], [2], [4], [5].

In this paper, we investigate the influence of ar-

chitectural hyperparameters on model performance,

focusing on a wide-kernel CNN model known for its

effectiveness in fault detection [1], [2], [4]. Through

an extensive grid search we explore in total 12,960

model combinations on seven well-known benchmark

datasets representing various fault detection tasks, also

for supporting computational sensemaking [20] and

explanation [21] onto modeling decisions.

Optimising CNN architectures is an established re-

search area. For example, [22] examined the impact

of batch sizes in CNNs, while [23] developed ef-

ficient hyperparameter optimisation methods for im-

age classification, and [24] refined hyperparameters,

for applications like COVID chest x-ray classifica-

tion. Furthermore, [25] evaluated optimisation algo-

rithms for sensor-based activity recognition using 1D

CNNs, although with different model depths and ob-

jectives compared to this study. Additionally, the use

of Bayesian optimisation in LSTM-RNN models for

traffic prediction was explored in [26]. However, this

optimisation algorithm assumes that the hyperparame-

ters can be tuned in a continuous way, making it inap-

plicable to the integer values used in this work, such

as, e.g., the number of filters in a layer. Therefore, this

work focuses on an extensive grid search to identify

the most effective hyperparameter combinations for its

specific neural network model.

III. BACKGROUND

This section describes the WK-CNN architecture,

the settings used in the hyperparameter grid search,

and the seven datasets.

A. Wide-Kernel Architecture

The wide-kernel architecture described in [1], [2],

[4], [5] excels at detecting industrial faults from vi-

bration data. It is relatively lightweight, consisting

of an initial ‘wide’ convolutional layer with a large

kernel length, followed by four more convolutional

layers with shorter kernels. Layers include the ReLU

activation, batch normalisation, dropout of 0.15, and

average pooling to decrease the output from length T
to T

2 . The output from these convolutional layers is

then flattened and routed into a fully-connected layer

of 100 ReLU units, which in turn feeds into a softmax

layer that classifies the vibration signal.

An important question is what kernel size, stride

and number of filters are optimal across the different

convolutional layers. We consider the kernel size and
number of filters in layer 1, layer 2 and layers 3-5, and
also the stride in layer 1. Taken together, this offers
7 different architectural hyperparameters which can be

tuned in order to optimise the performance of the wide-

kernel convolutional neural network (WK-CNN).

A grid search over combinations of values allows

us to examine the relationship between these 7 hy-

perparameters and WK-CNN performance. Full details

of the WK-CNN architecture and the experimental

procedure are provided in Section 3.1 and 3.2 of

[5]. Below, we extend on that related previous work

by including four extra benchmark datasets, and by

applying new follow-on analysis methods to extract

insights from the results.

B. Datasets

Compared to our previous work described in [5], we

consider the three datasets used there and also add four

new datasets to investigate the hyperparameters when

generalising across more kinds of vibration recordings.

In all, the datasets we use are as follows.

CWRU bearing dataset [27], [28]: Vibration data
from damaged bearings, sampled at 12 kHz and seg-

mented into 2048-timestep sequences. The data is

taken from the fan end experiment, and aggregated

across the 1797 and 1750 RPM operating speeds,

commonly used for fault detection and viewed as a

benchmark due to its similarity to real-world appli-

cations. In total, there are 1,355 sequences across 13

nearly-balanced classes, which are used with a 20-80%

train-test split.

1348

Gearbox dataset [29]: Represents lab recordings
of vibrations from an industrial gearbox, either in a

healthy condition or with a broken tooth. We aggre-

gated across operating loads, and divided into 978

samples of 2048 points, with a 20-80% train-test split.

Paderborn dataset [30]: From the Paderborn experi-
ments we took the vibration data for 8 ‘real damaged’

inner race faults, following [30]. The raw data was

sampled at 64 kHz and we extracted 1,000 randomly

sampled sequences of length 2048 for each condition,

with a 20-80% train-test split.

Society for Machinery Failure Prevention Technol-
ogy (MFPT) dataset [31]: We extracted 7 outer race
and 7 inner race faults under different load conditions

and a healthy baseline condition, resulting in 15 unique

classes. Sequences of 2048 points were created from

one of the vibration sensors.

The University of Conneticut (UoC) gear fault
dataset [32]: Data recorded by one vibration sensor at
20 kHz. Includes 9 conditions: healthy, missing tooth,

root crack, spalling, and chipping tip with 5 different

levels of severity. The dataset is balanced across every

condition, with 182 sequences per condition, resulting

in a fairly small dataset.

The Southeast University (SEU) dataset [33]: we
extracted the recordings from x, y and z-axis vibration

sensors placed on a planetary gearbox, with 5 different

types of damage. We used the full recordings, includ-

ing the initial start-up period at the beginning. In total,

there are 5110 sequences of 2048 data points, meaning

that there are 1022 sequences per class since the data

is balanced.

XJTU dataset [34]: We extracted recordings of
15 bearings obtained from accelerated degradation.

Two variables sampled at 25.6 kHz, converted into

480 sequences of 2048 timesteps per bearing fault

condition. The data is derived from the last 30 minutes

of the run-to-failure experiments, during which the

fault has developed.

IV. METHOD

This section describes the multi-part analysis

methodology we use to study the grid search results. In

contrast to previous research [5], we specifically focus

on generalising the results across all seven use-cases

instead of investigating the datasets individually.

A. Multiple Regression and Feature Importance

Our grid search covers 12,960 different combina-

tions of 7 hyperparameters. For each one, we train

and evaluate a WK-CNN on 7 different benchmark

datasets, leading to 7 accuracy scores. This data is

therefore suitable for performing a follow-on multiple

regression, where the goal is to predict the accuracy

on each benchmark dataset from the 7 hyperparameters

that were used for the model. We pursue this idea by

trying out several common ML regression algorithms.

A least-squares linear regression, a random forest, a k-

nearest neighbours regressor (k-NN) and a multilayer

perceptron (MLP) – containing 3 hidden layers of

32 units with ReLU activation – are all trained to

predict the 7 accuracy scores from the WK-CNN

hyperparameters. We also include a baseline which

involves simply predicting the mean value every time.

To evaluate the predictions of each approach, we use

the R-squared, mean absolute error (MAE) and mean

absolute percentage error (MAPE) evaluation metrics.

As a final step in this piece of the analysis, we

also take a ‘deep dive’ on the MLP regressor, using

Shapley values as in related work [5], to get feature

importance scores for the 7 input variables, i.e., the

7 hyperparameters. We gain overall insights about

the relative importance of each hyperparameter by

visualising how much they contribute to reducing the

MAE of the MLP regressor.

B. Variability According to Hyperparameter

One key question is how much the WK-CNN per-

formance changes in response to a hyperparameter.

To get an idea of this, we can look at the different

distributions of accuracy scores for each hyperpa-

rameter setting. For example, when the kernel size

in layer 1 is set to 32, there is a distribution of

scores obtained by testing all combinations of the other

hyperparameters. We have such a distribution for each

value of a hyperparameter (e.g. a distribution for each

kernel size).

To summarise this information, we look at the

d-dimensional “earth mover’s distance” (also known

as the d-dimensional “Wasserstein distance”) for one

hyperparameter at a time . The earth mover’s distance

is a way to compare probability distributions to one

another based intuitively on how much one distribution

has to be moved or shifted in order to become the other

[35]. The more dissimilar they are, the more moving is

required, and the earth mover’s distance is higher. The

d-dimensional version generalises the method to work

with more than 2 distributions [36]. With this method,

we can assign a single number to each hyperparameter

which gives a simplified summary of how much the

hyperparameter affects the accuracy scores. Before

calculating the earth mover’s distances, we normalise

the accuracy scores by quantilising, for each dataset,

so that accuracy scores are comparable. We calculate

d-dimensional earth mover scores on each dataset

separately, leading to a table containing a number for

each pair of hyperparameter and dataset.

An additional note is that the number of values

that a hyperparameter can have in our experiments

is not consistent, so, for example, we consider five

different kernel sizes in the first layer but only three

different strides. This makes it more difficult to directly

compare the earth mover’s distances of different hyper-

parameters, however it does not affect comparisons of

the same hyperparameter across datasets. Nevertheless,

to additionally consider the impact of some hyperpa-

rameters being tested with more settings than others,

1349

we provide a heatmap illustrating each earth mover’s

distance divided by the number of settings tested for

that hyperparameter, to see if the general trends across

hyperparameters remain unaffected.

C. Influence of Hyperparameters on One Another

Modifying the value of one hyperparameter might

change what value is optimal for another hyperparame-

ter. When this occurs, we can say that the first hyperpa-

rameter has influenced the optimal value of the second

hyperparameter. We explore this idea by looking at

how likely changing a hyperparameter is to affect the

optimal setting of another, expressed as a probability.

To calculate the influence of hyperparameter A on B,

we apply the procedure shown in Algorithm 1 to each

dataset, and then average across datasets.

Algorithm 1 Compute the influence of A on B
trialCount ← 0
differenceCount ← 0
for each configuration c ∈ (c1, c2, ..., c12960) do
c[B]← optimise(c, B)
for value v ∈ options(A) do
c′ ← c
c′[A] ← v
c′[B]← optimise(c′, B)
trialCount ← trialCount +1
if c �= c′ then
differenceCount ← differenceCount +1

end if
end for

end for each
return differenceCount / trialCount

After the scores have been calculated for each pair

of hyperparameters, the results can be visualised. We

visualise the results as a weighted, directed network

where the nodes are hyperparameters and the edges re-

flect the influence one hyperparameter has on another.

This provides a way to quickly evaluate how influential

and how easily influenced each hyperparameter is.

This information naturally suggests a strategy for

tuning the hyperparameters separately, whereby we try

to minimise the impact that each hyperparameter has

on previous hyperparameters. In other words, we wish

to avoid the situation in which tuning the last hyper-

parameter means that previous hyperparameters need

to be re-tuned. This approach is appealing because it

provides an alternative to a full grid search, which is

very computationally expensive when training with a

larger dataset. Instead of a grid search, which tests

every possible combination of the 7 hyperparameters,

it might be possible to achieve high performance when

tuning one hyperparameter at a time.

We empirically investigate how successful different

strategies are. Each strategy takes the form of a se-

quence, stating in which order to tune the hyperpa-

rameters. From every possible starting configuration,

we apply the tuning strategy, and then aggregate the

results to understand how effective the strategy is.

We aggregate by checking how frequently the final

configuration appears in a given percentile; e.g., we

consider how often the performance is in the 95th

percentile after applying the tuning strategy. The re-

sults can be interpreted as saying how often the tuning

strategy leads to performance of a certain level. For

our investigations, we use the following percentiles:

99.9%, 99%, 95%, 90%, 80% and 50%.

V. RESULTS

Here, we present the results of our analysis and the

insights obtained.

A. Multiple Regression and Feature Importance

Of the various regression algorithms used to predict

WK-CNN accuracy from the hyperparameters, Table I

shows that the nonlinear models (Random forest, K-

NN, MLP) perform the best. This suggests that there

is some important nonlinear interaction between the

hyperparameters and the fault detection performance

of WK-CNNs.

Fig. 2: Feature importance derived using Shapley

values. The sizes of boxes depict how much each

feature contributes to reducing the MAE of the MLP

model. The dotted line indicates the total improvement

achieved by using all hyperparameters as inputs.

Taking the MLP as an example model for predicting

WK-CNN performance, we can see in Fig. 2 that some

features are more important than others. The filters in

layers 3-5, and the hyperparameters related to the first

layer, appear to be the most important.

B. Variability According to Hyperparameter

Next, we take a deeper look at how hyperparam-

eters impact the accuracy on the different datasets,

before using this information to again draw general

conclusions. As stated in Section IV-B, we summarise

how the distribution of accuracy scores shifts when

a given hyperparameter is changed, for each dataset,

1350

TABLE I: Metrics of the multiple regression task to predict WK-CNN accuracy using the hyperparameters as

input variables. For the task, we utilised a mean baseline, a linear model, two nonlinear models and a DL model

(MLP). The MLP model contains three hidden layers each containing 32 ReLU units.

Model R2 MAE MAPE (%)

Mean Baseline 0.000 0.164 48.12

Linear Regression 0.437 0.120 32.40

Random Forest 0.966 0.072 18.26

K-NN 0.729 0.076 19.16

MLP 0.730 0.076 18.86

using the d-dimensional earth mover’s distance. The

resultant scores are presented in Table II.

All of the hyperparmeters show some variation

across datasets. In the case of the kernel size in

layer 1, for example, the earth mover’s distance is

0.05 for Gearbox and 0.64 for SEU. By contrast, the

distance score for the number of filters in layers 3-5 is

much greater for Gearbox and much smaller for SEU.

This implies there are differences between the datasets

which can noticeably impact the relationship between

a hyperparameter and test accuracy.

The kernel size in layer 2 and layers 3-5, and

likewise the number of filters in layer 2, seem to

have very little impact on the distribution of accuracy

scores, since the earth mover’s distances are close

to the minimum of 0 across all datasets. The kernel

size in layer 1 and the number of filters in layers 3-

5 appear to have the largest earth mover’s distances,

suggesting that they both are important for determining

what accuracy a wide-kernel CNN is likely to have.

As noted in Section IV-B, different hyperparameters

have a different number of possible settings. This

means that sometimes a greater number of distributions

are being compared when calculating the earth mover’s

distance. To validate that this does not impact the

conclusions we draw, we visualise the earth mover’s

distances when they are divided by the number of

possible settings that each hyperparameter can have, in

the heatmap in Figure 3. This confirms that the kernel

size in layer 1 and the number of filters in layers 3-5

are generally the most important hyperparameters for

deciding what level of test accuracy is likely to be

obtained. To a slightly lesser extent, the stride in layer

1 and the number of filters in layer 1 also have an

impact for some datasets. The remaining hyperparam-

eters have very little impact by comparison.

C. Influence of Hyperparameters on One Another

This section describes the influence that hyper-

parameters have on one another. It focuses on the

question “if Y is tuned, and then afterwards X is tuned,

how likely is it that Y will need to be re-tuned?” In

other words, this means “how much does changing X

affect what value Y should have?” The analysis is done

in a pairwise fashion, leading to probabilities reflecting

how much each hyperparameter affects each of the

Fig. 3: Heatmap showing the earth mover’s distance

across hyperparameter settings and datasets. Nor-

malised by dividing by the number of settings of the

hyperparameter that were tested in the experiment.

Higher scores indicate more change in the distribution

of WK-CNN accuracy scores.

others. After calculating the results between pairs of

variables, the results are shown in Fig. 4.

As shown in Fig. 4, there are noticeable differ-

ences in how influential and how easily influenced

the hyperparameters are. Both the kernel size in layer

1 and the number of filters in layers 3-5 are highly

influential, unlike, for example, the kernel size in layer

2. Generally, the kernel size hyperparameters are less

easily influenced, perhaps because they are affected

more by properties of the data (such as the sampling

frequency) than by other the hyperparameters. The

optimal number of filters to use in a layer is more

likely to be influenced by relevant kernel sizes. One

possibility is that a large number of filters and a

large kernel size leads to over-parameterisation of the

model, and thus the risk of overfitting, meaning that

the number of filters must change to compensate.

Overall, two of the most important hyperparameters

seem to be the kernel size in layer 1 and the number

1351

TABLE II: The d-dimensional Wasserstein/earth mover’s distances calculated per hyperparameter per dataset.

Dataset Kernel
Size
Layer 1

Stride
Layer 1

Filters
Layer 1

Kernel
Size
Layer 2

Filters
Layer 2

Kernel Size
Layers 3-5

Filters
Layers
3-5

CWRU 0.45 0.08 0.33 0.02 0.23 0.02 0.43

Gearbox 0.05 0.13 0.19 0.03 0.08 0.09 0.72

MFPT 0.19 0.11 0.45 0.01 0.23 0.02 0.32

Paderborn 0.41 0.19 0.16 0.01 0.09 0.02 0.36

SEU 0.64 0.05 0.19 0.02 0.13 0.05 0.14

UOC 0.29 0.13 0.42 0.01 0.18 0.02 0.38

XJTU 0.16 0.19 0.13 0.05 0.07 0.03 0.46

Average 0.31 0.13 0.27 0.02 0.15 0.04 0.40

TABLE III: Probability of obtaining a certain performance level if tuning hyperparameters individually,

according to different orders of tuning.

Ordering 99.9th percentile 99th 95th 90th 80th 50th

Minimising influence order 0.19 0.49 0.75 0.89 0.96 1.00

Maximising influence order 0.12 0.29 0.62 0.80 0.94 0.99

Random order 0.14 0.38 0.69 0.84 0.95 1.00

Fig. 4: Network visualisation of hyperparameter pair-

wise influence. The arrows indicate how likely it is

that changing one hyperparameter (the origin) will

mean that another hyperparameter (the destination)

will need to be re-tuned. Darker arrows imply a greater

likelihood. Probabilities less than 0.15 are not shown.

of filters in layers 3-5, since changing these will have

the highest chance of making it necessary to re-tune

other hyperparameters.

Using the above information, we can put the hyper-

parameters in a sequence that minimises the likelihood

of each element in the sequence causing hyperparam-

eters earlier in the sequence to need re-tuning. Doing

this, the order is:

1) Kernel Size Layer 1

2) Filters Layers 3-5

3) Stride Layer 1

4) Filters Layer 1

5) Filters Layer 2

6) Kernel Size Layers 3-5

7) Kernel Size Layer 2

Tuning the hyperparameters in this order leads to

performance within the top 1% of models roughly

half the time. By contrast, tuning in the reverse order

achieves the same level of performance less than one

third of the time. Table III shows the likelihood of

achieving different levels of performance depending

on the order in which the hyperparameters are tuned.

Particularly when targeting high performance, above

the 90th percentile, it is beneficial to tune such that

the likelihood of needing re-tuning is minimised.

VI. CONCLUSIONS

How best to tune hyperparameters is an often-

neglected question when working with neural net-

works. This paper extended on our analysis proposed

in [5] and used information from a grid search across

12,960 hyperparameter combinations to discover use-

ful information about how to tune a wide-kernel CNN

architecture ([1], [2], [4]) for industrial fault detec-

tion. In the process, we examined the link between

individual hyperparameters and the final performance

of trained models, and additionally we investigated

what impact each hyperparameter has on tuning other

hyperparameters. Looking at how they individually

contribute to model performance, the hyperparameters

in the first layer and the number of filters in layers

3-5 seem to be the most important. Developing our

1352

analysis further, we also proposed a strategy for tun-

ing hyperparameters sequentially, when applying the

WK-CNN architecture to new datasets in situations

where a full grid search would be too computationally

expensive. The strategy we suggested is one which

minimises the likelihood that hyperparameters will

need to be re-tuned during the process. The results

from the benchmark datasets suggest that this performs

better than tuning hyperparameters in either a random

order, or the reversed order. Future confirmatory work

could seek to establish this conclusion more firmly.

ACKNOWLEDGEMENTS

This work was supported by funds of

zukunft.niedersachsen, Volkswagen Foundation

(project “HybrInt – Hybrid Intelligence through

Interpretable Artificial Intelligence in Machine

Perception and Interaction”).

REFERENCES

[1] W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A new deep
learning model for fault diagnosis with good anti-noise and
domain adaptation ability on raw vibration signals,” Sensors,
vol. 17, no. 2, p. 425, 2017.

[2] J. van den Hoogen, S. Bloemheuvel, and M. Atzmueller, “An
improved wide-kernel cnn for classifying multivariate signals
in fault diagnosis,” in ICDMW 2020, 2020, pp. 275–283.

[3] S. Vollert, M. Atzmueller, and A. Theissler, “Interpretable
machine learning: A brief survey from the predictive main-
tenance perspective,” in Proc. IEEE International Conference
on Emerging Technologies and Factory Automation, 2021.

[4] J. van den Hoogen, S. Bloemheuvel, and M. Atzmueller, “Clas-
sifying multivariate signals in rolling bearing fault detection
using adaptive wide-kernel cnns,” Applied Sciences, vol. 11,
no. 23, 2021.

[5] J. van den Hoogen, D. Hudson, S. Bloemheuvel, and M. Atz-
mueller, “Hyperparameter analysis of wide-kernel cnn archi-
tectures in industrial fault detection: an exploratory study,” Int.
J. Data Sci. Anal., pp. 1–22, 2023.

[6] M. R. W. Group et al., “Report of large motor reliability survey
of industrial and commercial installations, part i,” IEEE Trans.
Ind Appl., vol. 1, no. 4, pp. 865–872, 1985.

[7] V. Pandhare, J. Singh, and J. Lee, “Convolutional neural
network based rolling-element bearing fault diagnosis for nat-
urally occurring and progressing defects using time-frequency
domain features,” in 2019 Prognostics and System Health
Management Conference (PHM-Paris), 2019, pp. 320–326.

[8] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X.
Gao, “Deep learning and its applications to machine health
monitoring,” Mechanical Systems and Signal Processing, vol.
115, pp. 213–237, 2019.

[9] D. Pandya, S. Upadhyay, and S. P. Harsha, “Fault diagnosis
of rolling element bearing with intrinsic mode function of
acoustic emission data using apf-knn,” Expert Syst. Appl.,
vol. 40, no. 10, pp. 4137–4145, 2013.

[10] Z. Zhou, C. Wen, and C. Yang, “Fault detection using random
projections and k-nearest neighbor rule for semiconductor
manufacturing processes,” IEEE Transactions on Semiconduc-
tor Manufacturing, vol. 28, no. 1, pp. 70–79, 2015.

[11] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He,
“Fault diagnosis of a rolling bearing using wavelet packet
denoising and random forests,” IEEE Sensors Journal, vol. 17,
no. 17, pp. 5581–5588, 2017.

[12] P. Santos, L. F. Villa, A. Reñones, A. Bustillo, and J. Maudes,
“An svm-based solution for fault detection in wind turbines,”
Sensors, vol. 15, no. 3, pp. 5627–5648, 2015.

[13] D. You, X. Gao, and S. Katayama, “Wpd-pca-based laser
welding process monitoring and defects diagnosis by using
fnn and svm,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 1, pp. 628–636, 2014.

[14] A. Hajnayeb, A. Ghasemloonia, S. Khadem, and M. Moradi,
“Application and comparison of an ann-based feature selection
method and the genetic algorithm in gearbox fault diagnosis,”
Expert Syst. Appl., vol. 38, no. 8, pp. 10 205–10 209, 2011.

[15] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal,
and G. Shroff, “Lstm-based encoder-decoder for multi-sensor
anomaly detection,” arXiv preprint arXiv:1607.00148, 2016.

[16] P. Yao, S. Yang, and P. Li, “Fault diagnosis based on rsenet-
lstm for industrial process,” in Proc. IEEE Advanced Informa-
tion Technology, Electronic and Automation Control Confer-
ence, vol. 5, 2021, pp. 728–732.

[17] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj,
“Real-time motor fault detection by 1-d convolutional neural
networks,” IEEE Trans. Ind. Electron., vol. 63, no. 11, pp.
7067–7075, 2016.

[18] Y. Liu, X. Yan, C.-a. Zhang, and W. Liu, “An ensemble
convolutional neural networks for bearing fault diagnosis using
multi-sensor data,” Sensors, vol. 19, no. 23, 2019.

[19] W. Zhang, G. Peng, and C. Li, “Rolling element bearings fault
intelligent diagnosis based on convolutional neural networks
using raw sensing signal,” pp. 77–84, 2017.

[20] M. Atzmueller, “Declarative Aspects in Explicative Data Min-
ing for Computational Sensemaking,” in Proc. International
Conference on Declarative Programming. Heidelberg, Ger-
many: Springer, 2018.

[21] M. Atzmueller and T. Roth-Berghofer, “The Mining and Anal-
ysis Continuum of Explaining Uncovered,” in Proc. AI-2010.
Springer, 2010.

[22] I. Kandel and M. Castelli, “The effect of batch size on the
generalizability of the convolutional neural networks on a
histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–
315, 2020.

[23] X. Xiao, M. Yan, S. Basodi, C. Ji, and Y. Pan, “Efficient
hyperparameter optimization in deep learning using a variable
length genetic algorithm,” 2020.

[24] A. P. Adedigba, S. A. Adeshina, O. E. Aina, and A. M.
Aibinu, “Optimal hyperparameter selection of deep learning
models for covid-19 chest x-ray classification,” Intelligence-
Based Medicine, vol. 5, p. 100034, 2021.

[25] S. Raziani and M. Azimbagirad, “Deep cnn hyperparame-
ter optimization algorithms for sensor-based human activity
recognition,” Neuroscience Inf., vol. 2, no. 3, p. 100078, 2022.

[26] H. Yi and K.-H. N. Bui, “An automated hyperparameter
search-based deep learning model for highway traffic predic-
tion,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 22, no. 9, pp. 5486–5495, 2020.

[27] “Cwru dataset; case western reserve university bearing data
center,” available: https://csegroups.case.edu/ bearingdatacen-
ter/home.

[28] H. Ocak and K. A. Loparo, “Estimation of the running speed
and bearing defect frequencies of an induction motor from
vibration data,” Mechanical Systems and Signal Processing,
vol. 18, no. 3, pp. 515–533, 2004.

[29] Y. Pandya, “Gearbox fault diagnosis data,” 06 2018. [Online].
Available: https://data.openei.org/submissions/623

[30] C. Lessmeier, J. K. Kimotho, D. Zimmer, and W. Sextro,
“Condition monitoring of bearing damage in electromechanical
drive systems by using motor current signals of electric motors:
A benchmark data set for data-driven classification,” Proc.
PHM Society European Conference, vol. 3, no. 1, 2016.

[31] Society For Machinery Failure Prevention Technology, “Fault
Data Sets,” https://mfpt.org/fault-data-sets/, Online, accessed:
July 2023.

[32] P. Cao, S. Zhang, and J. Tang, “Gear Fault Data,” 4 2018.
[Online]. Available: https://figshare.com/articles/dataset/Gear
Fault Data/6127874

[33] Southeast University (SEU), “Gearbox mechanical datasets,”
https://github.com/cathysiyu/Mechanical-datasets, Online, ac-
cessed: July 2023.

[34] B. Wang, Y. Lei, N. Li, and N. Li, “A hybrid prognostics ap-
proach for estimating remaining useful life of rolling element
bearings,” IEEE Transactions on Reliability, pp. 1–12, 2018.

[35] V. M. Panaretos and Y. Zemel, “Statistical aspects of wasser-
stein distances,” Annual review of statistics and its application,
vol. 6, pp. 405–431, 2019.

[36] J. Kline, “Properties of the d-dimensional earth mover’s prob-
lem,” Discrete Appl. Math., vol. 265, pp. 128–141, 2019.

1353

