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Abstract—Deep neural network shows excellent use in a lot
of real-world tasks. One of the deep learning tasks is object
detection. Well-annotated datasets will affect deep neural net-
work accuracy. More data learned by deep neural networks
will make the model more accurate. However, a well-annotated
dataset is hard to find, especially in a specific domain. To
overcome this, computer-generated data or virtual datasets are
used. Researchers could generate many images with specific
use cases also with its annotation. Research studies showed
that virtual datasets could be used for object detection tasks.
Nevertheless, with the usage of the virtual dataset, the model
must adapt to real datasets, or the model must have domain
adaptability features. We explored the domain adaptation inside
the object detection model using a virtual dataset to overcome a
few well-annotated datasets. We use VW-PPE dataset, using 5000
and 10000 virtual data and 220 real data. For model architecture,
we used YOLOv4 using CSPDarknet53 as the backbone and PAN
as the neck. The domain adaptation technique with fine-tuning
only on backbone weight achieved a mean average precision of
74.457.

YOLOv4, Object Detection, Virtual Dataset, Domain Adap-

tation, Personal Protective Equipment

I. INTRODUCTION

In the new spring of artificial intelligence, particularly

within the subfield of machine learning, numerous notable ad-

vancements have demonstrated the viability of using machine

learning for specific human tasks, such as object detection and

classification [1]. However, the success of machine learning is

heavily reliant on the availability of substantial amounts of

real data and their corresponding labels.

In the era of big data, obtaining real input data to train

machine learning algorithms is relatively straightforward for

a wide range of applications. However, several fields require

more extensive training data, which often necessitates manual

curation to ensure usability.

Preparing a dataset for training is complex, especially for

tasks like object detection, which require precise labeling of

object anchors in each image. Training an anchor-based object

detector with sparsely annotated data can lead to performance

degradation [2].

Challenges such as data availability and the laborious pro-

cess of data curation have prompted researchers to explore

alternative methods. Among these emerging methods are syn-

thetic data, computer-generated datasets, and virtual datasets.

Virtual datasets have gained popularity due to their ability to

provide abundant, accurately labeled data at a lower cost.

However, the use of virtual datasets presents a challenge:

cross-domain shift. Cross-domain object detection is complex

due to multi-level domain shifts in unseen domains [3]. Previ-

ous research has proposed various methods to address cross-

domain shifts, ranging from incorporating domain-adapting

layers [4] to developing hierarchical domain-consistent net-

works [3] to mitigate the challenges of using virtual data.

This study investigates a domain adaptation strategy that

maximizes the utility of virtual domain data in real-world

domains, thereby reducing the need for extensive real-world

data. Specifically, we demonstrate how transfer learning on a

well-established deep neural network can achieve state-of-the-

art results in automatic visual media indexing when trained

on virtually generated images of individuals wearing safety

gear such as high-visibility jackets and helmets, followed

by domain adaptation using a limited number of real image

training examples.

II. RELATED WORK

Object detection technologies have achieved amazing ac-

curacies with faster speeds that were unimaginable a few

years ago. Currently, YOLO [5] [6] [7] and RCNN [8] are

the de facto standards for object detection tasks. Much of the

research on object detection relies on huge, generic annotated

datasets such as Pascal [9], ImageNet [10], MS COCO [11],

or OpenImages [12]. These datasets collect a large amount of

images from the web and are manually annotated.

With the need for vast amounts of data to achieve good

accuracy, virtual or computer-generated datasets have gained

significant interest. The use of virtual datasets began with

research on detecting pedestrians, which showed promising

results with a derivation rate of less than 2% [13]. Virtual

datasets have also been utilized to study trained CNNs for

qualitative and quantitative analysis of deep features [14].

The usage of data generated from games has also been ex-

plored in a few research studies. In [15], 50,000 labeled images

from the game GTA-V were used with CNNs, demonstrating
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that the mean squared error for lane distance estimation is

considerably small when using only a virtual dataset. In an-

other study [16], Unreal Engine was used to generate datasets,

enabling an RCNN model to detect a sofa from different

viewpoints.
Datasets from GTA-V have shown promising results on

tasks such as real people tracking and pose estimation [17].

Using Faster R-CNN on virtual datasets and validating the

results on the KITTI dataset has also yielded positive outcomes

[18]. Virtual datasets have also been used to train simple

convolutional networks to detect objects belonging to various

classes in videos [19].
Object detection models can also benefit from virtual

datasets to achieve better accuracy. In [15], the use of a virtual

dataset called SIM 10k alongside the real dataset Cityscapes

for car detection resulted in an average precision of 51.6%.

Another study utilized 140,000 virtual images and just 220

real images to train an object detection model for Personal

Protective Equipment (PPE) detection with 76% accuracy [20].

Based on the research above, the usage of virtual datasets

could lead to models with improved accuracy.

III. METHODOLOGY

A. Virtual Data

(a) Image for real dataset (b) Image for virtual dataset

Fig. 1. Image sample for real & virtual dataset

We utilized the VW-PPE dataset, comprising over 140,000

virtual images and 220 real images. The virtual images were

generated using RAGE, the game engine for GTA-V, with

each image having a width of 1088 and a height of 612.

However, the real images varied in width and height. The

VW-PPE dataset consists of seven object classes: Bare Head,

Helmet, Ear Protection, Welding Mask, Bare Chest, High

Visibility Vest, and Person. The virtual images were generated

in 10 different locations on the game map, each with three

weather and time variations. From the pool of 140,000 virtual

images, we randomly sampled 5,000 and 10,000 images for

this research. The real images were evenly split between

training and test datasets in a 50:50 ratio. Sample images from

the VW-PPE dataset are illustrated in Fig. 1.

B. YOLO
The architecture employed for object detection in our

study is You Only Look Once (YOLO), a one-stage detector

Fig. 2. YOLOv4 architecture

capable of performing image localization and classification

simultaneously. Specifically, we utilized YOLOv4 for this task

due to its customizable components. YOLOv4 incorporates

CSPDarknet53 [21] as the backbone architecture, PAN [22]

as the neck, and YOLOv3 detector layer [1] as the head.

To assess the performance of our implementation, we uti-

lized Intersection over Union (IoU) based on the area of the

detected (D) and real (V) bounding boxes, along with Precision

(Pr) and Recall (Rc). The confidence score associated with

detected bounding boxes ranges from 0 to 1, and they are

included in the output only if their confidence score exceeds

a user-defined threshold. Based on these criteria, the mean

Average Precision (mAP) is calculated as the average of the

highest precision at various recall settings.

C. Loss Function

To ensure robust detection through the training of our deep

learning model, we employed the YOLOv4 loss function.

The initial component of the YOLOv4 loss function entails

the complete Intersection over Union (IoU) loss formula,

which computes loss based on the x and y coordinates of the

bounding boxes’ width and height [23].

α =
υ

(1− IoU) + υ′ (1)

υ =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2 (2)

Inside CIoU formula, there are 2 variables, which are α, a

positive trade-off parameter, explained in Equation 1, and υ
measures the consistency of aspect ratio, explained in Equation

2. So, the formula of LCIoU is explained in Equation 3.

LCIoU =

[
1− IoU +

ρ(b, bgt)

c2
+ αυ

]
(3)

The complete equation for YOLOv4 explained in Equation

4. In this function, we utilized the Complete Intersection over

Union formula to compute loss using x and y coordinates, as

well as the width and height of the bounding boxes [23].
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Ltotal = LCIoU

−
S2∑
i=0

B∑
j=0

Iobjij

[
Ĉilog(Ci) + (1− Ĉilog(1− Ci))

]

− λnoobj

S2∑
i=0

B∑
j=0

Inoobjij

[
Ĉilog(Ci) + (1− Ĉilog(1− Ci))

]

−
S2∑
i=0

Iobjij

∑
c∈classes

[p̂i(c)log(pi(c)) + (1− p̂i(c)log(1− pi(c)))]

(4)

Inside Equation 4, second and third components were calcu-

lated as the confidence scores of objectness inside every grid

cell. The variable of Inoobjij and Iobjij show the presence and

absence of an object on that pixel, respectively. Value of Iobjij

will be 1 if there are objects in the grid cell, and Inoobjij will

be 1 if there is no object in the grid cell and 0 conversely. The

variable of Ci and Ĉi are confidence scores of ground truth and

prediction of whether there is an object or not, respectively.

At the last component, there are p̂i and pi variables of actual

and prediction class, respectively, for classification loss.

D. Domain adaptation

Fig. 3. SHOT Domain Adaptation Scheme

Solving cross-domain shift problem for using virtual

datasets, we proposed using domain adaptation transfer learn-

ing. In specifically, we apply transfer learning to adapt YOLO

to our case. Our premise is that a pre-trained network contains

sufficient knowledge for us to specialize it for a new scenario

using the transfer learning capabilities of deep neural networks

and training sets generated from the virtual world.

The objective of transfer learning is to utilize the first al-

ready trained layers (i.e., those identifying low-level features)

and update the final layers of the network in order to expand

the detection capabilities to the new set of objects. With a

trained deep convolutional neural network, its first layers have

learned to identify increasingly complex features

In this experiment we used domain adaptation scheme based

on SHOT (Source Hypothesis Transfer) [4] and explained

in Fig. 3. For adjusting to and addressing the domain shift

problem, we implemented the SHOT Domain Adaptation

Scheme, where the last layer of the YOLO architecture utilized

for detecting bounding boxes would be frozen. In addition to

the weight of the freezing detecting layer, we will transfer the

weight of the backbone and neck.

In supervised domain adaptation, the model is trained using

labeled examples from the source domain and aims to adapt

its performance to the target domain, where labeled data

may be scarce or unavailable. SHOT starts with a supervised

learning phase where the model is trained on labeled data

from the source domain (e.g., virtual dataset). This initial

training phase provides the model with knowledge about the

task at hand and the characteristics of the source domain. After

the initial supervised training on the source domain, SHOT

proceeds with domain adaptation. Here, it leverages unlabeled

examples from the target domain (e.g., real-world data) to

refine the model’s predictions and adapt its performance to

the target domain. Despite the lack of explicit labels for the

target domain data, SHOT uses pseudo-labels generated by the

model’s predictions on the unlabeled target domain data. These

pseudo-labels effectively guide the model’s learning process

during domain adaptation.

E. SHOT domain adaptation and knowledge transfer

Domain adaptation aims to bridge the gap between the

distribution of the source domain (where labeled data is

available) and the target domain (where labeled data is scarce

or unavailable). In SHOT, the model is initially trained on

the source domain data (e.g., virtual dataset) with labeled

examples. Then, it makes predictions on unlabeled examples

from the target domain (e.g., real-world data). The predictions

on the unlabeled target domain examples are treated as pseudo-

labels. These pseudo-labels are used to retrain the model on

a combination of the source and target domain data. Through

this iterative process of self-training, the model learns to adapt

to the target domain distribution, improving its performance

on real-world data. Knowledge transfer refers to the process

of transferring knowledge learned from one task or domain

to another related task or domain. In the context of domain

adaptation, knowledge transfer involves leveraging knowledge

gained from the source domain to improve performance on the

target domain. SHOT utilizes knowledge transfer by leveraging

the labeled data from the source domain to guide the model’s

learning process on the target domain, even in the absence of

labeled target domain data. While both domain adaptation with

SHOT and knowledge transfer involves leveraging knowledge

from a source domain, the key difference lies in the specific

techniques and methodologies used to adapt the model to

the target domain. Domain adaptation with SHOT focuses

on iteratively refining the model’s predictions on unlabeled

target domain data using pseudo-labels generated during the

self-training process. Knowledge transfer may involve various

techniques such as fine-tuning, feature extraction, or model
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Scheme Total Sample Data mAP
YR 220 0

2*YVR 5000 27.251
10000 51.369

3*YCVR 5000 65.513
10000 72.264
20000 59.691

3*YCSVR 5000 74.457
10000 72.096
20000 73.369

2*YCMVR 5000 55.010
10000 54.368

2*YCMSVR 5000 59.977
10000 53.788

TABLE I
MAP RESULT FROM ALL TESTING SCHEME

distillation, where knowledge learned from the source domain

is applied directly or indirectly to the target domain without the

explicit use of pseudo-labels. In summary, while both domain

adaptation with SHOT and knowledge transfer aims to transfer

knowledge from a source domain to a target domain, they

differ in their methodologies and specific techniques employed

to achieve this goal.

IV. EXPERIMENTS

This scheme is explained in Fig. 2. We trained 6 schemes,

that is as below:

• Training from scratch using real dataset only (YR)

• Transfer learning from scratch (YVR)

• Transfer learning with pre-trained weight (YCVR)

• Transfer learning with domain adaptation scheme

(YCSVR)

• Transfer learning with mosaic augmentation and pre-

trained weight (YCMVR)

• Transfer learning with only backbone weight and mosaic

augmentation (YCMSVR)

Based on Table 1, YR receives 0 mAP, since no detections

achieved the confidence level. Utilizing 5000 sample data, the

mAP for YVR hits 27.251; and using 10,000 sample data,

the mAP reaches 51.369. Using virtual datasets as source

domains before transferring learning to real-world datasets is a

promising strategy for boosting mAP in object detection tasks,

as demonstrated by these results.

YCVR represents the increase from YVR, where the mAP

for 5000 sample data is 65.515 and for 10000 sample data it

is 72.264. Using pre-trained weight, even if it is cross-domain,

increases the mAP for the object identification model based

on this finding.

With 5000 virtual sample data, YCSVR achieves the best

mAP score of 74.457; while utilizing 10,000 virtual sample

data, the mAP score hits 72.096. Based on these findings,

it appears that transfer learning utilizing the SHOT Domain

Adaptation Scheme will increase mAP, but will struggle when

the proportion of virtual domain data is considerably bigger

than real domain data.

Lastly, with YCMVR and YCMSVR, it is demonstrated

that mosaic augmentation decreases mAP. All YCMVR and

Class AP
Head 84.052

Helmet 93.691
Ear Protection 42.292
Welding Mask 86.364

Bare Chest 59.159
High Visibility Vest 87.637

Person 51.457
TABLE II

AVERAGE PRECISION OF EACH CLASS USING BEST SCHEME

YCMSVR tests reveal a mAP between 50 and 59, which is

lower than YCVR.

(a) Real Dataset

(b) Sample 5.000 (c) Sample 10.000

Fig. 4. Average color histogram from all dataset used in research

Based on result in Table 1, it shows that mAP from YCSVR

using sample 10.000 is lower than sample 5.000. This is

because sampling process is random sampling, although class

distribution is in the same ratio, the image is still different.

Based on Fig. 4, it shows dataset from the real dataset is

brighter than the 2 sample data in the virtual dataset. The issue

with randomly sampling virtual datasets is that the average

histogram color of each sampled virtual dataset will be darker

than that of the actual dataset. Therefore, the domain shift

problem in this experiment is due to random sampling, which

makes virtual datasets darker than real datasets.

Table 2 explained of average precision of every class using

best scheme which is YCSVR. It shows that helmet class has

the highest average precision and ear protection class has the

lowest average precision. This is because of the helmet class

has most class label in dataset and ear protection has the fewest

class label in dataset.

Using YCSVR models has good result for bounding box

prediction and class classification. It is shown in Fig. 5.

V. DISCUSSION

SHOT learns domain-specific feature encoders while keep-

ing the source classifier module fixed. SHOT leverages the

source hypothesis to encode distribution information from un-

seen source data, employing the same classifier module across

different domain-specific feature encoders. By aiming to match

target feature distributions to source feature distributions,
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Fig. 5. Sample of detection of PPE objects

Mosaic augmentation combines multiple images into a

single training sample by randomly cropping and stitching

them together. While this can introduce diversity and increase

the effective dataset size, it may also exacerbate domain shift

issues when training on data from different domains. The com-

bined images may contain inconsistent visual characteristics or

context, making it challenging for the model to learn robust

representations that generalize well across domains.

Moreover, mosaic augmentation introduces additional com-

plexity to the training process by combining multiple images

into one. This complexity can make it harder for the model to

learn meaningful representations, especially in cross-domain

scenarios where the underlying visual patterns may differ

significantly between datasets. The model may struggle to

disentangle the different sources of information present in

the mosaic images, leading to confusion and degraded per-

formance.

In cross-domain object detection, the goal is often to learn

features that are invariant or robust to domain shifts. Mosaic

augmentation may not encourage the model to learn such

features effectively, as the combined images may contain

conflicting visual cues from different domains. As a result, the

model may struggle to generalize to new domains or exhibit

poor performance on unseen data.

VI. CONCLUSION

Training a deep neural network in virtual environments has

been proven to be of help when the number of the available

and usable training dataset is low. In this paper, we try to

research for personal protective equipment object detection

with a few real data/images. In our experiment, we trained

YOLOv4 on the virtual dataset and tested on real dataset.

We also fine-tune the deep neural network with small real

data. Based on the experiment that conducted, we found that

performance of transfer learning only backbone weight is

better than normal transfer learning, also we found out that

using mosaic augmentation is not a good choice for training

object detection cross-domain.
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