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Abstract—Symbolic Regression (SR) is a sub-field of machine
learning that attempts to find a concise closed-form equation for
regression tasks. The main strength of SR is in discovering new
equations which are explainable and interpretable, in contrast to
many black-box machine learning models. Thus, SR has become
a first-class algorithm in various fields, including physics and
engineering, and more recently healthcare. In this paper, we
utilize and evaluate recent state-of-the-art (SOTA) SR methods
and introduce our new proposed SR methods to the problem
of estimating Glomerular Filtration Rate (GFR). GFR is a key
indicator of kidney health and is an important determinant in
certain diagnoses, such as Chronic Kidney Disease (CKD). As
measuring GFR directly is expensive, the common practice for
healthcare professionals is to use medical equations to estimate
GFR from other biomarkers. However, most of these equations
are built on specific populations and are potentially inaccurate
for other populations. Additionally, there has been a growing
need to tailor equations for cohorts with unique properties
(e.g., young children, renal transplant patients). To address these
issues, we propose to use SR to discover new equations to better
estimate GFR for new populations or new cohorts. First, we
utilize SOTA SR methods to discover equations that achieve
better estimation performance than existing equations. Then,
we introduce our novel method of taking existing GFR medical
estimation equations as prior knowledge and evolving them via
Constrained Genetic Perturbation (CGP). The prior knowledge
used drastically reduces the search space and also discovers
equations that closely resemble the functional forms familiar to
medical professionals. We also introduce a variant that enables
the equation to be modified with newly obtained features. Finally,
we show that equations discovered by our methods demonstrate
the best performance among all equations.

Index Terms—Symbolic Regression, Glomerular Filtration
Rate, Machine Learning, Chronic Kidney Disease

I. INTRODUCTION

Symbolic Regression (SR) algorithms are machine learning

algorithms that find concise closed-form equations for regres-

sion prediction tasks [1]. In contrast to black-box machine

learning models, the equations produced by SR are explainable

and interpretable. SR has thus become a first-class algorithm in

various fields for equation discovery [2], including physics [3],

material sciences [4] and engineering [5]. Recently, there is

increased interest for SR in healthcare [6] because it produces

explainable equations which are white-box, in contrast to

black-box machine learning methods. In this paper, we utilize

and evaluate recent state-of-the-art (SOTA) SR methods and

introduce our new proposed SR methods to the problem of

estimating the Glomerular Filtration Rate (GFR).

GFR is an important determinant in certain diagnoses,

such as Chronic Kidney Disease (CKD) [7]. Measuring GFR

directly is expensive and time-consuming, since it involves the

plasma or urinary clearance of exogenous filtration markers

(e.g., inulin and iohexol). Thus, the common practice is to use

medical equations to compute an estimated GFR (eGFR) from

other biomarkers. However, there are 3 major weaknesses of

current eGFR equations: (i) Most of these eGFR equations

are built on Caucasian and Afro-American populations and

are potentially inaccurate for other populations [8]. (ii) Most

eGFR equations have low performance on cohorts with unique

properties (e.g., young children [9], renal transplant patients

[10]), thus requiring development of new equations that are

tailored to the specific cohort. (iii) The equation structure (i.e.,

equation excluding parameters) of current eGFR equations is

often arbitrarily decided [9, 11, 12, 13, 14].

To address these weaknesses, we propose to use SR to dis-

cover new equations to better estimate GFR. Our SR methods

(i) automate development of equations in new populations, (ii)

allow for tailored equations to specific cohorts to improve pre-

diction, and (iii) search a large variety of equation structures

to pick the best structure based on data-driven evidence.

Our Contributions:
1) We discover equations using SOTA SR methods which

select equation structures in a data-driven manner. These equa-

tions generate better estimates than current eGFR equations.

We also propose a modification to an existing SR method to

discover equations with conditions which perform even better.

2) We introduce our novel method of taking existing eGFR

equations as prior knowledge and evolving them via Con-

strained Genetic Perturbation (CGP). The prior knowledge

drastically reduces the search space and also discovers equa-

tions that closely resemble the functional forms familiar to

medical professionals.

3) We develop further improvements on our method using a

novel mechanism that enables existing eGFR equation to be

modified with newly obtained features.

4) We show that eGFR equations discovered by our methods

demonstrate robust outperformance over existing eGFR equa-

tions via a diverse range of prediction and complexity metrics.
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TABLE I: Existing Equations for Estimating GFR. 10 commonly used eGFR equations from MDCalc. When ethnic factor

correction is available, we present both versions: (i) with ethnic factor (WEF) (ii) no ethnic factor (NEF). The features used in

the equations are {age in years, gender, serum creatinine in mg/dL (SCR), serum cystatin C in mg/L (SCYS), height in cm}.

Name of Equation Condition Equation

MDRD NEF (2006) [11] female 129.85× SCR−1.154 × age−0.203

male 175× SCR−1.154 × age−0.203

MDRD WEF (2006) [11] female 157.37× SCR−1.154 × age−0.203

male 212.1× SCR−1.154 × age−0.203

Schwartz Equation (2009) [9] all 0.413× height/SCR

CKD-EPI Creatinine NEF (2009) [12] female, SCR ≤ 0.7 128.06× SCR−0.329 × 0.993age

female, SCR > 0.7 93.559× SCR−1.209 × 0.993age

male, SCR ≤ 0.9 135.02× SCR−0.411 × 0.993age

male, SCR > 0.9 124.14× SCR−1.209 × 0.993age

CKD-EPI Creatinine WEF (2009) [12] female, SCR ≤ 0.7 148.42× SCR−0.329 × 0.993age

female, SCR > 0.7 108.43× SCR−1.209 × 0.993age

male, SCR ≤ 0.9 156.49× SCR−0.411 × 0.993age

male, SCR > 0.9 143.87× SCR−1.209 × 0.993age

CKD-EPI Cystatin C (2012) [13] female, SCYS ≤ 0.8 110.89× SCYS−0.499 × 0.996age

female, SCYS > 0.8 92.166× SCYS−1.328 × 0.996age

male, SCYS ≤ 0.8 118.98× SCYS−0.499 × 0.996age

male, SCYS > 0.8 98.89× SCYS−1.328 × 0.996age

CKD-EPI Creatinine-Cystatin C NEF (2012) [13] female, SCYS ≤ 0.8, SCR ≤ 0.7 109.44× SCR−0.248 × SCYS−0.375 × 0.995age

female, SCYS ≤ 0.8, SCR > 0.7 96.495× SCR−0.601 × SCYS−0.375 × 0.995age

female, SCYS > 0.8, SCR ≤ 0.7 101.53× SCR−0.248 × SCYS−0.711 × 0.995age

female, SCYS > 0.8, SCR > 0.7 89.524× SCR−0.601 × SCYS−0.711 × 0.995age

male, SCYS ≤ 0.8, SCR ≤ 0.9 121.48× SCR−0.207 × SCYS−0.375 × 0.995age

male, SCYS ≤ 0.8, SCR > 0.9 116.54× SCR−0.601 × SCYS−0.375 × 0.995age

male, SCYS > 0.8, SCR ≤ 0.9 112.71× SCR−0.207 × SCYS−0.711 × 0.995age

male, SCYS > 0.8, SCR > 0.9 108.12× SCR−0.601 × SCYS−0.711 × 0.995age

CKD-EPI Creatinine-Cystatin C WEF (2012) [13] female, SCYS ≤ 0.8, SCR ≤ 0.7 118.19× SCR−0.248 × SCYS−0.375 × 0.995age

female, SCYS ≤ 0.8, SCR > 0.7 104.21× SCR−0.601 × SCYS−0.375 × 0.995age

female, SCYS > 0.8, SCR ≤ 0.7 109.66× SCR−0.248 × SCYS−0.711 × 0.995age

female, SCYS > 0.8, SCR > 0.7 96.686× SCR−0.601 × SCYS−0.711 × 0.995age

male, SCYS ≤ 0.8, SCR ≤ 0.9 131.2× SCR−0.207 × SCYS−0.375 × 0.995age

male, SCYS ≤ 0.8, SCR > 0.9 125.86× SCR−0.601 × SCYS−0.375 × 0.995age

male, SCYS > 0.8, SCR ≤ 0.9 121.72× SCR−0.207 × SCYS−0.711 × 0.995age

male, SCYS > 0.8, SCR > 0.9 116.77× SCR−0.601 × SCYS−0.711 × 0.995age

CKD-EPI Creatinine (2021) [14] female, SCR ≤ 0.7 131.86× SCR−0.241 × 0.9938age

female, SCR > 0.7 93.667× SCR−1.2 × 0.9938age

male, SCR ≤ 0.9 137.55× SCR−0.302 × 0.9938age

male, SCR > 0.9 125.13× SCR−1.2 × 0.9938age

CKD-EPI Creatinine-Cystatin C (2021) [14] female, SCYS ≤ 0.8, SCR ≤ 0.7 111.87× SCR−0.219 × SCYS−0.323 × 0.9961age

female, SCYS ≤ 0.8, SCR > 0.7 99.63× SCR−0.544 × SCYS−0.323 × 0.9961age

female, SCYS > 0.8, SCR ≤ 0.7 101.07× SCR−0.219 × SCYS−0.778 × 0.9961age

female, SCYS > 0.8, SCR > 0.7 90.011× SCR−0.544 × SCYS−0.778 × 0.9961age

male, SCYS ≤ 0.8, SCR ≤ 0.9 123.72× SCR−0.144 × SCYS−0.323 × 0.9961age

male, SCYS ≤ 0.8, SCR > 0.9 118.61× SCR−0.544 × SCYS−0.323 × 0.9961age

male, SCYS > 0.8, SCR ≤ 0.9 111.77× SCR−0.144 × SCYS−0.778 × 0.9961age

male, SCYS > 0.8, SCR > 0.9 107.16× SCR−0.544 × SCYS−0.778 × 0.9961age

II. RELATED WORK

SOTA Symbolic Regression. In the field of SR, genetic

programming (GP) has become the most common paradigm

to tackle the large search space of equations [1, 2, 15]. Even

SOTA SR algorithms incorporate GP at the core for regression

[16, 17, 18] and classification [19]. GP-based SR operates by

starting with a random population of equations, evaluating

them, and modifying these equations (via predefined evolu-

tionary operations such as crossover and mutation) based on

their evaluation scores. In this work, we chose deep symbolic

regression (DSR) [16], neural-guided genetic programming

(NGGP) [17] and DistilSR [20] as our choice of SOTA SR

methods based on recent SR benchmark performances in terms

of prediction and complexity on SRBench [21].

Existing eGFR Equations. In this work, we selected all

relevant eGFR equations from MDCalc, a well-known medical

reference for medical equations [22, 23], used by millions of

medical professionals globally (over 200 countries), inclusive

of more than 65% of US physicians. The equations are made

available in Table I, consisting of MDRD [11], Schwartz
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equation [9], CKD-EPI Creatinine [12], CKD-EPI Cystatin

and CKD-EPI Creatinine-Cystain C [13, 14]. When ethnic

factor correction is available in the equation, we present both

versions: (i) with ethnic factor (WEF) (ii) no ethnic factor

(NEF). Note that the ethnic factor corrections only cater to a

select few ethnic groups, which is one of the main weaknesses

of current eGFR equations our SR methods addresses (via

automated discovery of equations on new datasets).

III. METHODOLOGY

Dataset Details. In our work, we use a public dataset of

measured GFR (mGFR) of Congolese adults [8]. This dataset

obtained mGFR by measuring plasma clearance of iohexol.

Other features include {age in years, gender, serum creatinine

in mg/dL (SCR), serum cystatin C in mg/L (SCYS), height in

cm}, which are present in equations in Table I.

Algorithm Details. For all SR algorithms, we set the

functions in the primitive symbols set to {+,−,×, /,∧}.

The operands (features) in the primitive symbols set differ

based on the algorithm, which we discuss below. The other

hyperparameters are tuned based on mean squared error of the

estimated GFR on a validation set against the mGFR. In this

paper, we use a variety of SR algorithms, broadly categorized

as: (i) existing SOTA SR methods, (ii) modification of an

existing SR method and (iii) our proposed new SR methods.

(i) Existing SR: We use the 3 SOTA SR algorithms identified

in related works, DSR, NGGP and DistilSR, on all features of

the dataset. The top equation from each algorithm is registered

as a new discovered eGFR equation.

(ii) Modified Existing SR: We note that in the existing eGFR

equations (see Table I), most consist of conditions, which

may be preferred by healthcare professionals. It is difficult

for current SR algorithms to implicitly learn the structure of

these conditions implicitly. Thus, we explicitly modify SR to

use conditions, which we call conditioned-SR. In our work, we

selected the conditions based on gender (i.e., the first condition

is for females and the second condition is for males). For each

condition, we run DistilSR on the dataset with all features

and we pick the equations which perform well in MSE for

each condition. However, to be consistent with medical eGFR

equations, the final equations selected need to share the same

equation structure across the multiple conditions, inspired by

multi-level SR [18]. We picked DistilSR as the SR method

to modify since in DistilSR, the search space of equations is

deterministic, unlike DSR and NGGP.

(iii) Our Proposed New SR: In the methods above, the equa-

tions found are usually drastically different from existing

eGFR equations and do not use any information from the

existing eGFR equations. To this end, we introduce our novel

method of taking existing GFR medical estimation equations

as prior knowledge and evolving them via Constrained Genetic

Perturbation (CGP), as outlined in Algorithm 1. In CGP, we

utilize K-Expressions from Gene Expression Programming

[24] in order to have a easily manipulated representation of

an equation. As an example, the K-Expression ”∗+−abcde”

represents (a + b) ∗ (c − d). K-Expressions have other prop-

Algorithm 1: CGP Pseudo Code

Input: original equation, primitive symbols set, X, y,
where X is the features and y is the mGFR

Output: best modified equation
1 best score ← null
2 best modified equation ← null
3 original K exp ←

ConvertToKExpression(original equation)
4 for i ∈ {1, 2, · · · , len(original K exp)} do
5 for j ∈ {(i+ 1), (i+ 2), · · · , len(original K exp)} do
6 for α ∈ primitive symbols set do
7 for β ∈ primitive symbols set do
8 modified K exp ← original K exp
9 modified K exp[i] ← α

10 modified K exp[j] ← β
11 modified K exp ←

AppendPadding(modified K exp)
/* Padding ensures decoding to a

valid equation */
12 modified equation ←

Decode(modified K exp)
13 modified equation ←

BFGS(modified equation,X,y)
/* BFGS is a method for optimizing

numerical constants */
14 current score ←

MSE(modified equation,X,y)
15 if best score > current score then
16 best score ← current score
17 best modified equation ←

modified equation
18 end
19 end
20 end
21 end
22 end
23 return best modified equation

erties which are desirable, such as variable length equations

represented by fixed length strings and fulfilling the closure

property without much overhead [24, 20]. In CGP, an existing

eGFR equation is first converted to its K-Expression form.

The K-Expression is then perturbed at 2 points, as shown

in Step 4 to 10 of Algorithm 1. The K-Expression is then

converted back into an equation, with numerical constants

obtained by BFGS optimizer [25], and evaluated for the mean

squared error of its estimation of GFR against the mGFR. In

CGP, the prior knowledge used drastically reduces the search

space since only equations 2 genetic perturbations away from

the original equation are evaluated. Another benefit is that it

also discovers equations that closely resemble the functional

forms familiar to medical professionals if the input equation is

already a widely accepted medical equation. Note that in CGP,

we use a primitive symbol set that only includes features

that are in the original equations. Finally, we also introduce

a variant, extraCGP, that enables the equation to be modified

with all features by extending the primitive symbol set to

include all features. This is motivated by current research in

eGFR equations, where researchers manually modify well-

known equations by adding new features, such as the inclusion

of SCYS which was previously omitted in CKD-EPI equations.

Key Differences Between Algorithms. In DSR, NGGP

and DistilSR, it is hard to generate equations with conditions,
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TABLE II: New Equations (Our Contributions) for estimating GFR.

SR Method Used Name of Equation Condition Our Discovered Equation

DSR [16] SR-1 all height/(SCR + SCYS2/SCR)

NGGP [17] SR-2 all age× height/(age× SCYS2 + age+ 3× is female − SCYS)

DistilSR [20] SR-3 all height0.8677
SCYS

DistilSR [20] Conditioned-SR female (SCYS + 72.333)× SCYS−0.908

+ Our modification male (SCYS + 89.42)× SCYS−0.5543

Ours CGP-1 female, SCYS ≤ 0.8, SCR ≤ 0.7 243.41× 0.41121SCYS × 0.76392SCR

female, SCYS ≤ 0.8, SCR > 0.7 251.56× 0.72774SCYS × 0.39669SCR

female, SCYS > 0.8, SCR ≤ 0.7 102.43× 0.81339SCYS × 0.97084SCR

female, SCYS > 0.8, SCR > 0.7 149.82× 0.44582SCYS × 1.1073SCR

male, SCYS ≤ 0.8, SCR ≤ 0.9 17.063× 2.3259SCYS × 4.7351SCR

male, SCYS ≤ 0.8, SCR > 0.9 3468.7× 0.64898SCYS × 0.034174SCR

male, SCYS > 0.8, SCR ≤ 0.9 95.012× 0.73137SCYS × 1.4526SCR

male, SCYS > 0.8, SCR > 0.9 167.21× 0.66438SCYS × 0.81168SCR

Ours CGP-2 female, SCR ≤ 0.7 4.4617× SCR4.193 × (24.678− age) + 110.34
female, SCR > 0.7 0.49976× SCR−1.9447 × (58.564− age) + 72.42
male, SCR ≤ 0.9 2.2166× SCR7.555 × (71.968− age) + 84.107
male, SCR > 0.9 0.64289× SCR−4.251 × (51.547− age) + 86.198

Ours CGP-3 female, SCYS ≤ 0.8, SCR ≤ 0.7 SCR−0.23201 × (92.956× SCYS−0.44557 − 0.30801× age)
female, SCYS ≤ 0.8, SCR > 0.7 SCR−0.40425 × (79.963× SCYS−0.67882 − 0.32564× age)
female, SCYS > 0.8, SCR ≤ 0.7 SCR0.0115 × (86.741× SCYS−0.097012 − 0.070911× age)
female, SCYS > 0.8, SCR > 0.7 SCR0.18054 × (112.28× SCYS−0.29257 − 0.68316× age)
male, SCYS ≤ 0.8, SCR ≤ 0.9 SCR0.65914 × (2.0637× SCYS1.3969 + 4.4278× age)
male, SCYS ≤ 0.8, SCR > 0.9 SCR−11.75 × (0.14873× SCYS−13.426 + 1.3436× age)
male, SCYS > 0.8, SCR ≤ 0.9 SCR0.21501 × (114.67× SCYS−0.31784 − 0.33236× age)
male, SCYS > 0.8, SCR > 0.9 SCR−0.068742 × (108.45× SCYS−0.12809 − 0.37943× age)

Ours extraCGP-1 Obtained Same Equations as CGP-1

Ours extraCGP-2 female, SCR ≤ 0.7 298.76× age−0.11564 × 0.40507SCYS

female, SCR > 0.7 300.3× age−0.21147 × 0.5624SCYS

male, SCR ≤ 0.9 273.6× age−0.17364 × 0.6579SCYS

male, SCR > 0.9 242.21× age−0.17131 × 0.71114SCYS

Ours extraCGP-3 Obtained Same Equations as CGP-3

whereas in conditioned-SR the conditions are explicitly de-

fined and in CGP, the conditions follow that of the original

equation. In DSR and NGGP, the search space of equations

is large and a stochastic search is done, whereas DistilSR,

conditioned-SR and CGP does an exhaustive and deterministic

search. In DSR, NGGP, DistilSR and conditioned-SR, the

search space of equations are large and do not incorporate

the current equations, whereas CGP drastically reduces the

search space to K-Expressions that are 2 genetic perturbations

away and also discovers equations that closely resemble the

functional forms familiar to medical professionals.

Evaluation Details. We measure the performance of current

eGFR equations and our discovered eGFR equation via a

diverse range of prediction and complexity metrics. These

experiments are done with a 70-30 training-test split. In-line

with GFR literature, we chose the following 6 prediction

metrics (where y is the mGFR, ŷ is the eGFR, ρ is the

pearson’s correlation between mGFR and the eGFR, μ is the

mean and σ is the standard deviation):

i) Root-mean-squared error (RMSE),

√(∑N
i=1 (yi − ŷi)

2
/N

)
.

ii) Mean absolute error (MAE),
∑N

i=1 |yi − ŷi|/N .

iii) Lin’s concordance correlation coefficient (CCC) [26],

2ρσyσŷ/((μy − μŷ)
2
+ σ2

y + σ2
ŷ).

iv) Proportion of estimates within ±10% of mGFR (P10) [8].

v) Proportion of estimates within ±30% of mGFR (P30) [8].

vi) Stage accuracy, the agreement of eGFR with mGFR

in terms of categorizing individuals into the 5 guideline-

recommended GFR stages (Stage 1: > 90, Stage 2: 60 to 89,

Stage 3: 30 to 59, Stage 4: 15 to 29, Stage 5: < 15) [14].

In terms of complexity, we chose the following 3 metrics

from SR literature:

i) Peterson’s complexity, which is the sum of pre-defined

scores assigned to equation tokens as detailed in [16].

ii) Equation length, which is the sum of occurrences of

operations, constants and features in the equation [21].

iii) Minimum deSCRiption length (MDL), where an equation

with features x and numerical constants, p, given in the

form of f(x;p) has an MDL of Ld(p) + k log2 n; k
is the number of times the n basis functions appear [27]. For

real numbers, Ld(p) is given by 1
2

∑
i log2

(
1 +

(
pi

ε

)2)
. In

particular, we follow the implementation in [27], in which the

precision floor, ε, is set to 2−30.
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TABLE III: Prediction performance analysis of all existing and new equations. Best performances are bolded.

Name of Equation RMSE MAE Lin’s CCC P10 P30 Stage Accuracy
(lower is better) (lower is better) (higher is better) (higher is better) (higher is better) (higher is better)

Existing Equations
MDRD NEF (2006) [11] 24.704 16.04 0.355 0.387 0.836 0.581
MDRD WEF (2006) [11] 32.394 20.496 0.28 0.306 0.765 0.653
Schwartz Equation (2009) [9] 23.144 18.579 0.196 0.244 0.785 0.418
CKD-EPI Creatinine NEF (2009) [12] 19.564 13.735 0.512 0.5 0.806 0.663
CKD-EPI Creatinine WEF (2009) [12] 28.45 22.536 0.365 0.204 0.704 0.653
CKD-EPI Cystatin C (2012) [13] 21.042 15.832 0.521 0.428 0.836 0.581
CKD-EPI Creatinine-Cystatin C NEF (2012) [13] 16.58 11.825 0.591 0.5 0.908 0.663
CKD-EPI Creatinine-Cystatin C WEF (2012) [13] 19.975 15.409 0.518 0.367 0.836 0.653
CKD-EPI Creatinine (2021) [14] 20.083 14.416 0.493 0.397 0.806 0.673
CKD-EPI Creatinine-Cystatin C (2021) [14] 17.726 13.278 0.545 0.418 0.867 0.663

Our Discovered Equations (New Contributions)
SR-1 17.294 13.217 0.481 0.438 0.908 0.591
SR-2 15.893 12.086 0.464 0.469 0.938 0.622
SR-3 15.95 12.235 0.37 0.438 0.938 0.612
Conditioned-SR 14.826 10.985 0.521 0.53 0.938 0.693
CGP-1/extraCGP-1 13.922 9.7528 0.6 0.571 0.938 0.734
CGP-2 13.808 10.222 0.621 0.561 0.948 0.683
CGP-3/extraCGP-3 13.025 8.711 0.667 0.632 0.948 0.755
extraCGP-2 13.63 9.4247 0.623 0.622 0.948 0.775

(a) RMSE vs Peterson’s Complexity. (b) RMSE vs Expression Length. (c) RMSE vs MDL.

(d) Lin’s CCC vs Peterson’s Complexity. (e) Lin’s CCC vs Expression Length. (f) Lin’s CCC vs MDL.

Fig. 1: Plots of various prediction metrics against various complexity metrics.

IV. RESULTS AND DISCUSSION

In Table II, we document the new eGFR equations we

generated using SR. 8 new equations were discovered in total.

SR-1, SR-2, SR-3 were found using existing SOTA SR meth-

ods. Conditioned-SR was found using DistilSR with our mod-

ifications. CGP-1, CGP-2, CGP-3, extraCGP-1, extraCGP-2

and extraCGP-3 were found using our new CGP algorithm

(see Algorithm 1) which takes in an equation and modifies

it. In particular, CGP-1 and extraCGP-1 were modified from

‘CKD-EPI Creatinine WEF (2012)’. CGP-2 and extraCGP-

2 were modified from ‘CKD-EPI Creatinine (2021)’. CGP-3

and extraCGP-3 were modified from ‘CKD-EPI Creatinine-

Cystatin C (2021)’. The difference between CGP and ex-

traCGP is that CGP uses only features provided by the original

equation, whereas extraCGP uses all features in the dataset.

Note that CGP-1 and extraCGP-1 are the same, suggesting

that the equation with genetic perturbations including the extra

features did not result in better performance. The same applies

to CGP-3 and extraCGP-3.

Do our new eGFR equations from SR provide better
estimates than current equations? We record the prediction

performances of the equations in Table III. In all 6 prediction

performance metrics, the best equations were our discovered

equations using SR. Notably, CGP-3/extraCGP-3 performed

the best in 5 out of 6 metrics, coming second in the remaining
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(a) Existing: CKD-EPI Creatinine-
Cystatin C NEF (2012) [13]

(b) Existing: CKD-EPI Creatinine
(2021) [14]

(c) Existing: CKD-EPI Creatinine-
Cystatin C (2021) [14]

(d) New (Ours): CGP-2 (e) New (Ours): CGP-3/extraCGP-3 (f) New (Ours): extraCGP-2

Fig. 2: Bland-Altman analysis of 3 top existing eGFR equations and 3 top eGFR equations we discover.

metric. It should also be noted that CGP-1/extraCGP-1, CGP-

2, CGP-3/extraCGP-3 and extraCGP-2 are superior to all

existing equations on all 6 performance metrics.

How does the prediction-complexity tradeoff of the new
eGFR equations compare to existing equations? Although

our methods perform best in terms of pure prediction perfor-

mance as discussed above, it is important to verify that this

is not at the expense of higher complexity (which translates

to less explainability and interpretability). We can observe

qualitatively that our discovered eGFR equations in Table II

are simple and similar in complexity to existing equations.

Quantitative-wise, we use 3 widely accepted complexity met-

rics. In Fig. 1, we plot various prediction metrics against

various complexity metrics. In these 6 plots, our discovered

eGFR equations pareto-dominates existing eGFR equations. In

other words, for each of our top eGFR equations, there is no

existing eGFR equation which has both better prediction and

lower complexity.

Do the new eGFR equations diagnose better compared to
existing equations? On the macro level, as seen in Table III,

the stage accuracy of our discovered equations show the best

performance. To analyze the micro level, we perform a Bland-

Altman analysis for 3 top existing eGFR equations (see Fig.

2a,2b,2c) and 3 top new eGFR equations we discovered (see

Fig. 2d,2e,2f). The Bland-Altman analysis is commonly used

in healthcare to evaluate the agreement between a estimate

and a measured value [8]. The Bland-Altman plots in Fig.

2 demonstrate that our eGFR equations perform better than

existing equations. In the existing eGFR equations, we see

that the mean difference is positive, suggesting that existing

eGFR equations tend to overestimate the mGFR, which may

result in missed diagnosis of a weak kidney (low GFR).

On the other hand, our discovered equations have a near 0

mean difference. Additionally, the standard deviation of the

difference (eGFR-mGFR) for existing equations are larger than

our new equations. Furthermore, despite the smaller standard

deviation of our equations’ eGFR, more of the differences lies

within ±1.96 standard deviation (95% limits of agreement).

Limitations: Our work is based upon retrospective data and

hence future work using on a prospective cohort is required

to provide further validation for the new equations.

V. CONCLUSION

In this paper, we utilize and demonstrate a variety of

ways for SR to discover medical eGFR equations, inclusive

of methods using SOTA SR and our own proposed SR

innovations. First, using SOTA SR methods, we discover

eGFR equations that achieve better estimation performance

than existing equations. Then, we introduce our novel method,

Constrained Genetic Perturbation, which takes existing eGFR

equations and modifies them to achieve better performance.

Prior knowledge, in the form of the existing equation, dras-

tically reduces the search space and also discovers equations

that closely resemble the functional forms familiar to medical

professionals. We then introduce a variant that also enables the

equation to be modified with newly obtained features, which

produced the equation extraCGP-2, the best equation in terms

of diagnosing the kidney stage. Finally, we show that equations

discovered by our methods demonstrate the best performance

among all equations over a large range of prediction and

complexity metrics. Future work could explore expanding the

primitive set. We hope that our work will motivate healthcare

professionals to use SR following our methodology to discover

new medical equations in an automated and data-driven way.
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