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Abstract—Recent development in audio-driven talking face
generation strives for controlling facial features including facial
expression, head pose, eye blink, etc. as well as accurate lip-
synchronization and the ability to apply to arbitrary subjects.
Existing audio-visual models that can control facial features
require encoders that encode driving videos, which is both
computationally expensive and limited by the availability of such
driving videos. In this paper, we address this limitation and
aim to control facial features without encoding driving videos.
We propose a cascaded GAN-based audio-visual model, which
incorporates face mesh as an intermediate representation. Dif-
ferent from existing cascaded methods that use facial landmarks,
our method uses face mesh as a medium of informative facial
feature representation. To the best of our knowledge, this is
the first cascaded model that allows controllable talking face
generation via face mesh. We train our audio-visual model
with training samples of MEAD dataset. In the evaluation, we
benchmark our model in extensive experiments on MEAD and
LRW datasets. The results show our model outperforms existing
ones by generating high-fidelity audio-driven talking faces on
arbitrary subjects with realistic emotional expression patterns.

Index Terms—talking face generation, facial animation, con-
trollable generation

I. INTRODUCTION

Generating talking head videos is a challenging task and it

has a wide range of applications in entertainment, education,

healthcare, and communication industries. The main technical

issue is to generate realistic and expressive videos with high

fidelity and synchronized lip motions. Meanwhile, researchers

are paying more attention to the controllability of facial

features, i.e. being able to change specific semantics/motions

based on control signals. Controllable video generation can

boost the flexibility of product deployment and enhance user

experience by creating engaging talking heads [1], [2].

With the latest advancements in audio-driven talking face

generation [1], [3], [4], the controllability of facial features

(e.g. emotional expressions, head pose, eye blink) is achieved

while ensuring precise lip-synchronization and fidelity. Many

audio-driven models adopt an implicit control mechanism, i.e.
they disentangle the driving audio to control different aspects

of facial features [5]–[8]. This mechanism has shown some

success in controlling lip motion owing to the high correlation

between lip motion and the driving audio. However, it is less

effective to control other features (e.g. head pose and emotion)

because the correlation between these facial features and the
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audio is weak. Some works propose to generate talking head

videos with explicit control over eye blink [9], [10]. However,

eye blink is visible only within a minor facial area, so it has

little effect on user perception. In essence, audio-driven models

offer limited controllability over the aspects of facial features.

Another stream of works adopts driving videos to exert con-

trol over facial features, typically called face reenactment [1],

[3], [4]. These audio-visual models utilize encoders to process

driving videos to manipulate the facial features of the gener-

ated faces. These models are end-to-end trainable and allow

for explicit control, provided that they can effectively extract

disentangled information in the encoding process. However,

such a practice is constrained by the content of the available

driving videos, i.e. one needs to find suitable driving videos

to achieve the desired effect of control.

To alleviate this problem, we attempt to explicitly control

emotional expression in generated talking faces without encod-

ing driving videos (Fig. 1). We propose a new cascaded model

that leverages face landmarks as an intermediate representa-

tion, which serves to disentangle the face identity (appearance)

and the face dynamics (motion). Facial landmarks are 2D or

3D points to localize salient regions of a face. Depending

on the representation format, they range from sparse 2D

points (e.g. 68 points) [11] that capture key features, such

as face contours, eyes, eyebrows, nose, and mouth, to dense

representations such as 3DMM using as many as 53,000 ver-

tices [12]. With more condensed representation (as compared

to pixel-based images), facial landmarks are conducive to

controllable generation. This study adopts face mesh - a type

of face landmark with intermediate representation sparsity - to

represent facial features, aiming to strike a favorable trade-off

of data efficiency and informativeness.

A major challenge to face generation based on face mesh

is how to ensure temporal consistency with a sparse represen-

tation (as compared to pixel-based approaches). Failing to do

so leads to instability in generated videos. In this research,

we divide the task into two sub-tasks, namely, talking face

mesh generation and face mesh-to-face translation, which are

implemented in a cascaded manner (as shown in Fig. 2). In

the talking face mesh generation, we develop a face mesh

generator to generate face meshes according to control signals

(e.g. happy, sad, neutral) with the given face mesh of a refer-

ence identity and the driving audio (speech). Importantly, we

propose a face mesh alignment procedure to tackle the stability

issue. This is achieved by training the face mesh encoder and
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Fig. 1. Our audio-visual model generates realistic talking face videos of arbitrary faces on reference images with synchronized lips to audio and is capable of
controlling emotional expression with a given emotion label. Note that the generated videos of different faces are conditioned on the same audio clip. Results
with all the emotions can be found in our supplementary video.

generator to reconstruct target face meshes with an aligned

reference face mesh. In the face mesh-to-face translation, our

audio-visual model employs a conditional GAN to translate

talking face meshes into talking faces. It includes an encoder

decoder-based generator and a discriminator that are trained

adversarially. The generator takes as input the concatenated

embeddings of the generated face mesh and the reference

image of the target identity and generates a realistic face that

mimics the face mesh.

The contributions can be summarized in three-fold. (1) The

proposed model generates audio-driven realistic talking head

videos that can control emotional expression explicitly without

encoding driving reference videos. (2) The proposed model is

the first cascaded model that incorporates face meshes into

two orchestrated sub-tasks. To the best of our knowledge, this

is the first cascaded model that can control facial features

(i.e. emotional expression) other than lip motion. (3) With

the evaluations on two well-known datasets (MEAD [13] and

LRW [14]), we show that our model generates realistic talking

head videos with explicit control of emotional expressions.

II. RELATED WORK

According to the source of lip motion, talking head gen-

eration can be broadly classified into two categories: (1)

text-driven and (2) audio-driven. Text-driven talking head

generation methods [15], [16] are usually based on phonemes,

which are the unit of sound structure extracted from the

given text. Audio-driven talking head generation methods

usually process audio as spectrogram [1], [3], [17]–[19] or

acoustic features [20]–[23]. One of the well-known audio-

driven talking face generation models is Wav2Lip [24] which

utilizes a powerful Lip sync expert. Some studies [1], [2],

[25]–[27] utilize both the driving text and the driving audio.

For example, [25] aims to build language robust talking

face generation by using audio and phonemes. TalkLip [28]

focuses on reading intelligibility and employs a lip-reading

expert that transcribes videos to text to improve generated lip

motions. Recently, DiffTalk [23] and Diffused Heads [29] have

employed diffusion models for audio-driven face generation.

Regarding the controllability of facial features such as head

pose [3], [30], emotion [22], eye blink, or a combination

of them [1], [2], [4], [18], [31], existing methods usually

use driving videos along with the driving audio. Some of

the approaches utilize single-driving video to control a single

feature other than lip motion. PC-AVS [3] is the first approach

that uses driving video to control the pose of the generated

talking head. EAMM [22] can generate realistic emotion-

aware talking heads based on reference images, driving audio,

and driving videos. AVFR-GAN [18] reenacts a reference im-

age based on driving audio and video to control facial features.

StyleTalk [2] generates style-controllable talking faces with

a driving video that depicts the styles. Some works utilize

more than one driving video and focus on the disentanglement

of facial features to achieve fine control over multiple facial

features. For example, GC-AVT [4] generates audio-driven

talking face videos with controllable expressions and head

poses with driving videos. PD-FGC [1] controls facial features

with the disentanglement of lip motions, eye gaze and blink,

head pose, and emotional expression.

In view of the computational complexity of controlling

facial features through encoding driving videos, some studies

propose controlling facial features without driving videos.

However, they either control features by inferring from driving

audio or exhibit limited control power on facial features [5]–

[10]. In [5], head poses are inferred from the given audio to

achieve personalized head poses. In addition to head pose,

FACIAL [6] also generates realistic eye blinks by learning

implicit facial features from driving audio along with lip

motion. In [7], a cascaded method is proposed to disentangle

audio as content and emotion, whereby emotional expressions

are controlled by the disentangled emotion features. In [8],

an end-to-end trainable model is built to control emotional

expression by using driving audio.
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Similar to our model, some works [2], [7], [9], [10], [16],

[27], [32]–[34] incorporate facial landmarks as an intermediate

medium. For example, MakeItTalk [32] is a landmark-based

model that predicts facial landmarks from driven audio and

then translates predicted landmarks to face images. Canonical

landmarks are used as an intermediate representation, so as to

generate talking head videos with spontaneous eye blinks [10].

SadTalker [9] generates eye-blink controllable talking head

videos via a cascaded model based on 3DMM and a 3D-

aware face renderer. Existing landmark-based models usually

have two limitations: (1) they are often applied to the faces of

specific persons [16], [27], and (2) they show limited power

in controlling facial features [16], [27], [32]. For example,

although [9], [10] can control eye blink as one of the other

facial features explicitly, eye blink is a minor facial motion

that is visible on only a small portion of the face. Hence, it

does not affect other parts of the generated faces and is not

related to lip motion. In comparison, our face-landmark-based

model is capable of generating videos of an arbitrary face and

exerting effective control over emotional expression.

III. APPROACH

Fig. 2 shows the overview of our audio-visual model that

generates realistic talking face videos of an arbitrary subject

with lips synchronized to the audio. Our model is capable of

controlling emotional expression explicitly. By incorporating

face mesh, we design a cascaded model consisting of two sub-

tasks: face mesh generation and face mesh-to-face translation.

In the face mesh generation, our model includes two encoders

to encode audio clips and the reference face meshes and a

generator to generate face meshes according to the conditioned

control signals. In the face mesh-to-face translation, our model

employs a GAN with a generator and a discriminator.

A. Disentanglement

As mentioned earlier, we aim to disentangle the facial

features without requiring video encoders as much as possible,

so as to alleviate the need of driving video at the inference

time. In so doing, we leverage the facial landmarks to disen-

tangle the face identity (appearance) and the face dynamics

(motion). Motions related to the emotional expression and the

lip motion are disentangled by training the face mesh generator

to reconstruct face meshes conditioned on the emotion label

and the latent vector of audio.

Since the space of emotional expression is well-defined,

controlling the expression with the emotion label is suit-

able and straightforward. Our model employs the categorical

model, which describes emotions with a set of emotion labels

(e.g. happy, surprised, sad, etc.). For lip motion control, we

employ an audio encoder to learn the space of lip motion and

audio and compute latent vectors for the driven audio.

B. Talking Face Mesh Generation

Public datasets usually do not provide face mesh informa-

tion. To address this issue, we resort to an off-the-shelf model,

called CVZone, to extract face mesh information. The facial

landmark model consists of 468 3D points. It should be noted

that our method is agnostic to the face mesh extraction model.

For the talking face mesh generation, our model employs

two encoders and a generator. Encoders compute latent vectors

for the driven audio and the given reference face meshes. The

encoded latent vectors are concatenated with the emotion label

of the target expression. Then, the concatenated control signals

are given to the generator as a condition to synthesize face

meshes that depict the given control signals.

The audio encoder is trained to compute latent vectors for

the driven audio. We leverage the audio encoder proposed

in [3]. First, the raw audios are converted into spectrograms

in 2D time-frequency space. Next, they are given to the audio

encoder as input to build the space of the audio spectogram

and lip motion of face meshes.

A major challenge to talking face generation via face mesh

is how to ensure stability, which refers to generating faces

with temporal consistency. Inspired by SadTalker [9] whıch

tackles instability by ExpNet to generate intermediate repre-

sentation based on 3DMM, we train our model to generate

blocks of c consecutive frames. While the model is capable

of generating temporarily consistent c frames, we observe

instability between blocks of frames. To mitigate this issue, we

propose an additional alignment step whereby the reference

face mesh is aligned with the first target face mesh of the

c consistent frames with the homography. Next, it is given

to the face mesh encoder to compute a latent vector that

guides the generator to generate face meshes that maintain

inter-block consistency. At the inference time, the alignment

is not necessary since the face mesh of the reference image is

given directly and the generated face meshes are expected to be

aligned to the face mesh of the reference image. In addition to

the instability between blocks of consistent frames, face mesh

alignment improves the controllability of lips and expression

as it disentangles the head pose motion and the facial motions

related to expression and lips. It is further explored in the

following sub-section and Section IV-C with an ablation study.

C. Talking Face Generation

For the talking face generation, our model employs a condi-

tional image-to-image translation GAN similar to [32] with a

generator and a discriminator. The generator takes face meshes

as a condition and it is concatenated with the reference frame.

A GAN model is trained to generate target frames and trick the

discriminator by generating realistic frames. The discriminator

is trained to distinguish real and generated frames. Hence, the

generator and the discriminator are trained adversarially.

At inference time, the generator translates the generated face

mesh and generates a face with the appearance of the identity

on the given reference frame. Thus, the generated face is a

variant of the given identity that mimics the generated mesh.

D. Training

N training video clips with K-frame videos, {V1 =
{I(1,1), ..., I(1,K)}, ..., VN = {I(N,1), ..., I(N,K)}} are ac-

companied by audio {A1 = {a(1,1), ..., a(1,K)}, ..., AN =
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Fig. 2. Overview of the proposed model. At the inference time, the model generates the face mesh conditioned on the face mesh of the reference image,
driving audio, and the target emotion label, and then the generated face mesh and the reference image are given to the face generator as conditions to generate
the face that mimics the generated face mesh.

{a(N,1), ..., a(N,K)}} that is processed into spectogram. Video

clips depict the head videos of different subjects with different

emotions. The annotation of training video clips is extended

by extracting face mesh m(n,k) for each frame. The goal is

to generate any target face mesh mt
(n,k) and any target frame

It(n,k) that depicts the talking head of target identity st with

driving target audio at(n,k) and the target emotion label et.
The face mesh generation model is conditioned on a

randomly selected reference face mesh mr
(n,k) where n ∈

[1, ..., N ] and k ∈ [1, ...,K]. mr
(n,k) is a randomly selected

face mesh of the same subject st with an arbitrary emotion. So,

the target audio and the target emotion label can be different

from the audio and emotion label of the reference face mesh as

it is selected randomly from a set that consists of every video

clip of the same subject. Hence, the face mesh generator is

trained to generate lip motions and expressions that are not

identical to those in the given reference face mesh.

Since reference face meshes are selected randomly, they

are not temporally consistent with the target face mesh and

there exists an arbitrary head pose motion (possibly undesired)

along with the facial motion. So, giving the reference face

mesh directly leads to instability in the generated talking face

video and confuses the face mesh generator as it consists of

head pose motion and facial motion. To solve this problem,

reference face meshes are aligned by wrapping the reference

face mesh with computed homography between the reference

and the target face mesh.

During the training, the model is trained to reconstruct every

available face mesh with aligned reference face meshes. So,

the reconstruction loss (Equation 1) is the main leading loss.

Audio encoder (Ea), face mesh encoder (Em), and the face

mesh generator (Gm) are trained to minimize the following

Mean Squared Error (MSE) as reconstruction loss:

Lrec
m = ‖mt

(n,k) −mg
(n,k)‖2, (1)

where mt
(n,k) denotes the target face mesh. For a set of the

inputs (the target face mesh mt
(n,k), driving audio at(n,k),

emotion label et), mg
(n,k) denotes the generated face mesh

and formulated as follows:

mg
(n,k) = Gm(Ea(a

t
(n,k)), Em(ω(mr

(n,k))), e
t), (2)

where ω is a wrapping operation. The wrapping operation is

omitted at test time and inference time.

The talking face generator (Gf ) is conditioned on a target

face mesh (mt
(n,k)) and trained to translate reference frame

(Ir
(n,k̂)

) to target frame (It(n,k)). Note that although mt
(n,k)

is a set of 2D points in the talking face mesh generation, it

denotes a binary image that represents the same face mesh in

the talking face generation. Ir
(n,k̂)

(where k̂ ∈ [1, ...,K]) is a

randomly selected frame from the same video clip as the target

frame, considering that the outfit and the hairstyle of subjects

might vary from video clip to video clip. k̂ is selected as 1
at test time. Similar to face mesh generation, a reconstruction

loss is computed based on the target frame (It(n,k)) and the

generated frame (Ig(n,k)), which consists of two components:

(i) MSE loss (ii) L1 norm based on VGG features [35].

Lrec
f = ‖It(n,k) − Ig(n,k)‖2 + ‖φ(It(n,k))− φ(Ig(n,k))‖1, (3)

where φ denotes concatenated features of pretrained VGG19

network. Since the training of the talking face mesh generation

and the face mesh-to-face translation are independent. The

generated frame is formulated as follows:

Ig(n,k) = Gf (I
r
(n,k̂)

,mt
(n,k)). (4)

At inference time, mt
(n,k) is replaced by mg

(n,k).

In addition to reconstruction loss, the talking face generator

is also trained with an adversarial loss, computed based on

the discriminator’s ability to distinguish real and generated

frames. Least squared adversarial loss is used for adversarial

training and the generator is trained to optimize the following

to generate indistinguishable frames from real frames:

Ladv
G = (D(Ig(n,k)))

2. (5)
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Hence, the full objective function of the generator consists

of the reconstruction loss and the adversarial loss and is

formulated as follows:

LG = λrecLrec
f + λadvLadv

G , (6)

where λrec and λadv balance the loss functions with default

values 100.0 and 1.0, respectively.

The discriminator (D) is trained to optimize the following

adversarial loss to distinguish real and generated frames:

Ladv
D =

1

2

[
D(It(n,k)))

2 + (D(Ig(n,k))− 1)2
]
. (7)

E. Implementation Details

The talking face mesh generation (face mesh encoder, audio

encoder, and face mesh generator) and the face mesh-to-face

translation are trained independently, but this does not harm

our model’s ability to work end-to-end fashion at inference

time. During training, all networks are trained from scratch

with Adam optimizer for 500k iterations with batch size of

16, learning rate of 0.0002, β1 = 0.5, β2 = 0.999.

The face mesh generator is trained to generate 8 consecutive

frames i.e. the default value of c is selected as 8 experimen-

tally. Based on experiments, we found that 8 is an optimal

number for generating stable face mesh videos. Unlike the

face mesh generator, the face generator is trained to generate

faces frame-by-frame.

IV. EXPERIMENTS

We conduct experiments to compare our method with state-

of-the-art methods including MakeItTalk [32], PC-AVS [3],

PD-FGC [1], and SadTalker [9]. Their results are produced

by using their publicly available pretrained models. In the

evaluation, models are used to reconstruct test videos with

driving audio and the first frame as the reference image. In

addition, PC-AVS and PD-FGC are fed with ground truth

test videos as they require driving videos, which gives them

an extra advantage. In contrast, our model only requires the

ground truth emotion label.

Datasets We train our model on multi-view emotional

audio-visual dataset (MEAD) and evaluate it on both

MEAD and lip reading in the wild (LRW) datasets. MEAD

dataset [13] consists of high-quality audio-visual recordings

of subjects speaking with 8 different emotions at 3 intensity

levels. The dataset includes videos of more than 40 different

actors, and we randomly select 6 subjects for evaluation. We

use the highest intensity levels of emotions in the training of

our model and the evaluation of models. LRW dataset [14]

consists of 1,000 utterances of 500 different words with

videos that last about 1 second. This dataset has no emotion

annotation. Thus, we use its testing set for evaluation only by

giving neutral as the emotion label.

A. Qualitative Results

Figures 3 and 4 compares our method with MakeItTalk [32],

PC-AVS [3], PD-FGC [1], and SadTalker [9] on the test

set of MEAD [13] and LRW [14] datasets, respectively. In
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Fig. 3. Qualitative comparison on MEAD dataset [13]

addition to the generated results, the ground truth is also

provided for comparing lip shape and identity. As shown in

Figures 3 and 4, our method generates better talking faces

than benchmark methods, with results closer to ground truth in

terms of lip synchronization, identity preservation, and image

quality. MakeItTalk’s results have lower image quality. PC-

AVS and PD-FGC cannot preserve the given identity well.

SadTalker suffers from a lack of lip synchronization.

B. Quantitative Results

Metrics we evaluate our method in terms of both video

quality and lip synchronization based on 5 metrics that are

widely used in recent works. For video quality, structural

similarity index (SSIM) [36] and peak signal-to-noise ratio

(PSNR) are used. Both SSIM and PSNR measure the simi-

larity between real and generated frames. SSIM compares the

outcome based on image patches whereas PSNR is a pixel-

wise metric. For lip synchronization, the confidence score

of SyncNet (Conf.) [14], facial landmark distance [37] on

the mouth (Lmdm) and the whole face (Lmd) are used.

SyncNet measures the accuracy of mouth shape with driving

audio. Facial landmark distances (Lmdm, Lmd) are computed

between the facial landmarks detected on the ground truth and

generated frames. Note that although our method generates

face mesh, the generated face meshes are not used for the

computation of Lmdm and Lmd. Instead, facial landmarks are

detected on the generated talking face videos separately.

Tables I and II show the results of our model and benchmark

models on the test sets of MEAD and LRW datasets, respec-

tively. Our model has the best scores in most metrics (except
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Fig. 4. Qualitative comparison on LRW [14]

Method
Video Quality Lip Synchronization

SSIM ↑ PSNR ↑ Conf. ↑ Lmdm ↓ Lmd ↓
MakeItTalk 0.537 18.061 0.469 0.803 0.549
PC-AVS 0.586 22.659 0.677 0.982 0.727
PD-FGC 0.357 16.693 0.833 1.176 1.314
SadTalker 0.501 17.414 0.448 0.826 1.768
Ours 0.798 28.370 0.596 0.747 0.397

TABLE I
COMPARISON OF OUR MODEL WITH MAKEITTALK [32], PC-AVS [3],

PD-FGC [1], AND SADTALKER [9] ON MEAD [13] DATASET

for Conf.) with large margins in both datasets. Better SSIM,

PSNR, Lmdm, and Lmd show that our model is capable of

generating talking face videos with higher quality in terms of

video quality and lip synchronization. Specifically, our model

achieves the best scores on Lmdm and Lmd, which means

that our model can generate lip motions closer to the ground

truth than benchmark models and it can generate realistic

lip motions that are synchronized with the driving audio.

Meanwhile, our method did not achieve the highest confidence

score. This is because the confidence score of SyncNet is very

sensitive to the audio, which may lead to a better score with

Method
Video Quality Lip Synchronization

SSIM ↑ PSNR ↑ Conf. ↑ Lmdm ↓ Lmd ↓
MakeItTalk 0.425 18.608 1.316 0.654 0.573
PC-AVS 0.409 19.571 1.551 0.619 0.676
PD-FGC 0.216 14.518 1.698 0.843 1.502
SadTalker 0.279 15.301 1.199 0.667 0.957
Ours 0.615 20.987 1.199 0.450 0.365

TABLE II
COMPARISON OF OUR MODEL WITH MAKEITTALK [32], PC-AVS [3],

PD-FGC [1], AND SADTALKER [9] ON LRW [14] DATASET
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Fig. 5. Comparison of generated talking face videos of our full model with
the ablation model. Note that the results are shown by zooming faces to show
the details better.

unrealistic lip motions as discussed in [9]. In fact, it is argued

that the confidence score of SyncNet need not be indicative

of true lip-sync quality when a model outperforms ground

truth’s SyncNet score [19]. In our case, the SyncNet scores of

ground truth are 0.620 and 1.503 in MEAD and LRW datasets,

respectively, which are close to our model’s score.

C. Ablation Study

In the ablation study, we evaluate the effectiveness of

the face mesh alignment with homography in training. The

ablation model’s face mesh generator is trained by omitting

the face mesh alignment.

Method
Video Quality Lip Synchronization

SSIM ↑ PSNR ↑ Conf. ↑ Lmdm ↓ Lmd ↓

M
E

A
D

w/o align. 0.731 26.832 0.454 0.788 0.473
Full Model 0.798 28.370 0.596 0.747 0.397
w/o align. 0.551 19.412 1.091 0.716 0.545

L
R

W

Full Model 0.615 20.987 1.199 0.450 0.365
TABLE III

ABLATION STUDY FOR THE FACE MESH ALIGNMENT WITH HOMOGRAPHY.

Fig. 5 illustrates the generated face meshes and faces with

the full model and the ablation model (w/o align.) with the

ground truth on the test set of MEAD and LRW datasets.

Although the desired lip motions (target lip motions on ground

truth) are changing, the ablation model generates face meshes

with the same lip motion. On the other hand, the full model is

capable of generating lip motions similar to the ground truth.

Moreover, Table III compares scores of the full model and

the ablation model. Apparently, the full model achieves better

scores than the ablation model in all metrics, indicating that

face mesh alignment during training is effective. The main

reason is that the face mesh alignment facilitates disentangle-

ment of head pose motion and facial motion (motion related
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to expression and lips), which in turn helps the model learn

facial motions. In comparison, non-aligned input face meshes

confuse the face mesh generator as it consists of the head

pose motion and the facial motion together. Hence, the face

mesh generator cannot relate the given inputs (audio and the

emotion label) with the head pose motion.

V. CONCLUSION

In this paper, we propose a novel cascaded audio-visual

model that can generate audio-driven talking faces with high fi-

delity on arbitrary subjects with realistic emotional expression

patterns. Our model incorporates face mesh as an intermediate

representation, which is the first to explicitly control facial

features using this medium of representation. Unlike existing

methods, our method allows controllable talking face gener-

ation without encoding driving videos. The results show that

our model outperforms existing models in generating audio-

driven talking faces. Notably, our model generates realistic

video from a single reference image and driving audio and

can control emotional expression without driving videos. One

limitation of our model is that it does not model the head pose

to control it explicitly. This limitation can be improved by

modeling head pose changes. Similarly, we leave it as future

work to use face mesh to control other features such as eye

blink, head pose, and gaze direction.

Ethical Considerations Our model improves the flexibility

of talking face generation as it enables controlling emotional

expression without driving videos in the synthesis of realistic

talking face videos. Although the main goal is to synthesize

virtual avatars, it can be misused to synthesize harmful content

that we do not condone. We also hope our method leads to

progress in the forgery detection area to identify synthesized

content to prevent harmful usage.
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