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Abstract—This study presents a novel approach to web-based
telemedicine services by utilizing and improving the U-Net
deep learning architecture. Here we present a user-friendly web
application designed for medical professionals to diagnose chest
X-ray images easily using the service provided by our proposed
TelLung-Net architecture. By using the web application a user
can upload their X-ray images, the proposed architecture then
segments the image, and instant segmentation results provide
visual aids during remote consultation for both patients and
medical professionals. In this research, we use 1228 X-Ray
images from Mendeley data for training and testing our proposed
architecture. Our experiments demonstrate that the proposed
TelLung-Net achieves 96.26% accuracy with a 0.95 f1 score
in chest X-ray segmentation. Incorporating image segmentation
into U-Net deep learning architecture significantly improves the
precision and accuracy of identifying issues in X-ray images. It
also improves system reliability, and reduces time by identifying
chest abnormalities.

Index Terms—Image Segmentation, U-Net architecture,
Biomedical Image Processing, Telehealth

I. INTRODUCTION

The integration of telemedicine and artificial intelligence

(AI) is revolutionizing healthcare by making it more accessible

and dynamic. A major factor propelling the changing health-

care industry forward is incorporating technologies such as

telemedicine and artificial intelligence (AI) [24]. This research

aims to develop a novel process that combines Python, HTML,

CSS, and JavaScript frameworks to build a TensorFlow.js

web application. The web application effectively provides

segmented chest X-ray pictures in medical healthcare. It also

improves the diagnostic process through supervised segmented

lung pictures over the original chest X-rays, providing essen-

tial visual context for healthcare professionals in one place.

The current healthcare landscape has seen a growing need

for telemedicine services that are both efficient and easily

accessible [3] for both patients and doctors. The need for

prompt and precise diagnosis is important and requires modern

health technology, Where significant obstacle arises from

latency concerns inherent to online implementation [2]. This

is particularly crucial when patients demand immediate replies

from the telemedicine systems.

The research intends to develop a specialized healthcare

model for analyzing chest X-ray images and managing pa-

tients’ medical documents in one place solution. The proposed

model has been effectively incorporated into a web application

using the Keras model, specifically offering a user-friendly

interface for online deployment. In addition to addressing the

technical intricacies of the model, the research lays consider-

able importance on enhancing the speed of inference to satisfy

the expectations of online users for efficient telemedicine

services [1].

Figure 1 depicts the first stages of web-based telemedicine

services, including image processing techniques designed

for individuals suffering from asthma and chest diseases

[9]. Patients use the online application and utilize artificial

intelligence-enabled filtering to authenticate medical informa-

tion and its accompanying attachments. The U-Net architecture

is used for image processing [13], specifically for analyzing
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Fig. 1. Web-Enabled Chest X-Ray Image Segmentation using U-Net

and processing pictures linked to the chest. After the anal-

ysis, a specialized professional is effectively designated to

the patient. This paper also improves the effectiveness and

availability of telemedicine services for individuals suffering

from chest disease. In today’s world, the dynamic healthcare

environment has necessitated the development of solutions that

enable patients to access and use advanced medical services

conveniently.The objectives of the research are:

• System Implementation: To create and execute an ad-

vanced web-enabled telemedicine platform that provides

a smooth and secure virtual space for online consultations

designed for individuals with chest diseases.

• Image Processing with U-Net: This research utilizes the

proposed U-Net architecture to perform image processing

tasks, primarily analyzing chest-related pictures by pro-

cessing medical pictures for initial diagnostic purposes

within the domain of chest disease.

• Specialist Assignment: Develop a method within the

healthcare system to effectively allocate medical spe-

cialists to patients by leveraging the results obtained

from image processing analysis. This approach expresses

timely and focused virtual consultations customized to

meet the needs of patients with chest diseases.

The key contributions of this research are:

1) Proposed U-Net architecture for real-time lung X-ray

image classification

2) Development of a telemedicine web application for both

patients and doctors

3) Integration of U-Net classification engine with the

telemedicine web application

The subsequent sections of the paper are structured in the

following manner: Section II provides the preceding related

works. With numerous figures and facts, Section III provides a

thorough description of the methodology. The proposed model

is explained in Section IV with some figures and equations.

The proposed model outcome is discussed in Section V, and

Section VI is the conclusion.

II. LITERATURE REVIEW

Cindy et al. [5] explored the effectiveness of U-Net-based

semantic segmentation approaches for lung nodule detection,

a critical aspect in combating the precarious nature of lung

cancer in humans. The multi-step process involved dataset

preprocessing, employing architectures such as U-Net2D,

R2U-Net2D, U-Net++, and Attention U-Net, and training

the models with rigorous evaluation metrics [16]. U-Net2D

performed exceptionally well with 99.38% accuracy, a mean

IOU of 74.34%, and a low binary cross-entropy loss of

0.01. Cui and Yanning [6] introduced CFUN+, a two-stage

multi-modality segmentation strategy for detailed substructure

segmentation of the whole heart. Using original CT and MRI

data, this approach combined Faster R-CNN and a 3D U-Net.

CFUN+ introduced a novel CIoU loss function, achieving a

Dice score of 91.1% on the MM-WHS 2017 challenge CT

dataset, surpassing the baseline CFUN model by 5.2%. The

method significantly improved segmentation speed, reducing

the time to less than 6 seconds for a single heart [17]. The

limitations include sensitivity to image quality, difficulty in

handling diverse datasets, high computational needs, and the

requirement for extensive labeled data.

Naseer and Arfan [20] presented early lung cancer detection

using a modified U-Net, extracting nodules, and classifying

them as cancerous or not using Alex Net-SVM. Tested on

the LUAN16 dataset, their method showed high accuracy

(97.98%) and effectiveness in distinguishing lung cancer.

Salama and Aly [22] introduced a novel framework for precise

lung CT image segmentation, aiming to improve lung cancer

analysis. They used the U-Net algorithm with data augmenta-

tion and various preprocessing steps. The algorithm achieved

impressive results, including a 98.78% Jaccard Index and a

98.75% dice-coefficient index in lung cancer segmentation,

with a computational time of 2.2145 seconds. Ferdinandus

et al. contributed [8] to use deep learning, specifically the

MultiResUNet architecture, to improve lung segmentation and

COVID-19 infection analysis in CT images. The Mean-IoU

evaluation metric demonstrated a 1.33% improvement in seg-

mentation accuracy with MultiResUNet (93.05%) compared

to U-Net (91.83%) in the utilized dataset. These findings

suggest promising advancements in lung segmentation for

early detection of COVID-19 infection.

Xiao et al. [26] introduced an innovative solution to address

the limitations of existing lung segmentation algorithms by

proposing a novel UNet-like model termed In-UNet. Addi-

tionally, integrating the Mish activation function contributed

to the overall segmentation effectiveness [18]. The In-UNet

showed superior lung parenchyma region segmentation com-

pared to other networks in experimental validation on a lung

CT dataset. Yang and Tian [27] proposed an advanced deep

learning-based semantic segmentation network for efficient

whole heart segmentation in cardiovascular disease diagnosis.

By enhancing the attention mechanism and optimizing data

preprocessing based on TransUNet, the model achieved a Dice

score of 0.929 on the MM-WHS 2017 dataset, surpassing

previous methods. While promising, further validation across

diverse datasets and considerations for computational effi-

ciency in real-time applications. Qiao and Song [21] enhanced

U-Net for better whole heart segmentation in CT images by
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introducing the ASPP module and attention mechanism to

overcome complexity, low accuracy, tissue adhesion, and in-

complete segmentation issues. The algorithm achieved 89.74%

segmentation accuracy on the MMWHS dataset, showcasing

improvement in whole heart structure segmentation. The po-

tential limitations include generalization across datasets and

computational efficiency in real-time applications.

III. METHODOLOGY

At first, we split the dataset into training, validation and

testing in 60:30:10 proportion. Then we apply the proposed

TelLung-Net model to the selected dataset. Then validate and

test the data on the training data. After validation, we evaluate

the model performance on F1-score, precision, and recall. The

detailed method is presented in the following subsections.

A. Dataset

The research utilizes two open-source Mendeley Data

datasets to examine pulmonary chest X-ray anomalies. The

dataset known as Pulmonary Chest X-Ray Abnormalities con-

sists of a collection of pictures (as shown in Figure 2) obtained

from two sources: Shenzhen and Montgomery in Table I. The

Montgomery subset includes left and right lung masks for each

of its 138 images. This dataset provides diverse chest X-ray

data for training and validating models.

Fig. 2. Used Dataset Sample

TABLE I
DATASET IMAGE DESCRIPTION

Dataset name Source Image
Chest X-Ray Abnormalities Shenzhen and Montgomery [11] 662
Montgomery Subset Shenzhen Hospital [10] 566

B. Dataset Preparation and Training

We created a complete data set containing all the photos to

evaluate our image processing. We also set aside a separate

test set for later assessment. After that, we divided the dataset

into two parts for training and validation. We ensured an equal

number of tuberculosis (TB) and normal patient images in

both sets, maintaining a 60:30:10 ratio. The training dataset

contained 362 samples, with 185 labeled as normal and 177

as tuberculosis, and 100 images for test cases. The validation

dataset had 242 samples, of which 124 were labeled as normal,

and 118 were tuberculosis in the Table II. The process of

resizing each image and their related masks to a defined size

of 128x128 pixels meets the purpose of establishing consis-

tency within the dataset. This consistency, in turn, facilitates

consistent processing of the data. Implementing the TelLung-

Net model in the Keras framework involves the selection of the

Adam optimizer [12], responsible for effective weight updates

throughout the training process. To improve the convergence

and stability of the model, a normalization technique is used,

where, the pixel values of the images are divided by 255 [25].

TABLE II
DATASET DETAILS AT DIFFERENT STAGES

Stage Total Samples Normal Cases Tuberculosis Cases
Training 362 185 177

Validation 242 124 118
Testing 100 50 50

IV. PROPOSED TELLUNG-NET ARCHITECTURE

The proposed architecture consists of three main compo-

nents, which are presented in Figure 3. The components are

the Contracting Path, Bottleneck, and Expansive Path. The

working processes of the following components are given

below.

A. TelLung-Net Architecture

The U-Net architecture is a convolutional neural network

(CNN) specifically developed for semantic segmentation tasks

[7]. The proposed architecture Components are listed below:

• Contracting Path: The architecture comprises a series

of convolutional layers, followed by max-pooling layers.

The process of iteratively reducing the resolution of data

to collect and retain contextual information. At every

stage, the number of feature channels is doubled. [14]

• Bottleneck: The architecture comprises convolutional

layers designed to retain contextual information.

• Expansive Path: The inverse of the contracting route is

formed by using up-convolutions and combining them

with high-resolution features obtained from the contract-

ing path. At each stage, the number of feature channels

is reduced by half (0.5).

The TelLung-Net model integrates conventional convolutional

and pooling procedures. The fundamental operation used is

the convolution.

Convolution, Y = σ(W ∗X + b) (1)

In the Equation1, W represents the weights, X is the input, b is

the bias term and sigma is the activation function (commonly

ReLU) [23] [4]. The pooling operation is typically max-

pooling:

MaxPooling, Y = maxpool(X) (2)

where X is the input. For up-convolution, is commonly imple-

mented using transposed convolutions or up sampling [15]

UpConvolution, Y = transpose− convolution(X) (3)
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Fig. 3. Proposed U-Net architecture for Chest X-ray image segmentation.

This architecture captures context and helps pinpoint locations

well. It’s great for tasks like accurately finding lung boundaries

in medical images [19]. This research examines the use of U-

Net for lung segmentation in chest X-ray images. The archi-

tectural characteristics of U-Net, which form the foundation

of its functionality, are outlined below:
Encoder (Contracting Path):
• The input layer (128x128x3) takes chest X-ray images as

input. In Table III demonstrates the encoding portion of

UNet architecture.

• Convolutional layers (Conv2D) with ReLU activation and

dropout are applied to extract features.

• This process is repeated to create a deep encoding path

that captures hierarchical features.

Decoder (Expanding Path):
• Convolutional layers with dropout are used to up sample

and generate higher resolution feature maps. In Table IV

describes the decoding of U-Net architecture.

• Transposed convolutional layers(Conv2DTranspose) are

employed for up-sampling.

• Skip connections concatenate feature maps from the

corresponding layers in the encoder, aiding in preserving

spatial information.

Output Layer:

• The final layer utilizes a Conv2D layer with a sigmoid

activation function, producing a binary mask representing

the segmented lungs image.

Training:

• Binary cross entropy loss compares the predicted mask

with the ground truth lung mask.

• Adam optimizer is employed for gradient descent during

training.

Parameters: The total trainable parameters in the model

are 19,41,105. The encoder captures key features, while the

decoder generates segmented masks. The TelLung-Net ar-

chitecture is trained using the fit generator method, which

undergoes several training cycles. The implementation of the

proposed model architecture is accessible in the GitHub1.

TABLE III
U-NET MODEL ENCODER

Layer Type Filters Size Stride Pad Dropout
Input Layer - 128x128x3 - - -
Conv2D 16 3x3 1 1 -
Dropout - - - - 0.25
... ... ... ... ... ...
Conv2D 128 3x3 1 1 -
Dropout - - - - 0.25
Conv2D 128 3x3 1 1 -

TABLE IV
U-NET MODEL DECODER

Layer Filters Size/Stride Pad Dropout
Conv2DTranspose 128 3x3/2 1 -
Concatenate - - - -
Conv2D 128 3x3/1 1 -
Dropout - - - 0.25
... ... ... ... ...
Conv2D 16 3x3/1 1 -
Dropout - - - 0.25
Conv2DTranspose 16 3x3/2 1 -
Concatenate - - - -
Conv2D 1 1x1/1 1 -

B. Image Masking with Generator Function

For the testing and training stages, we are able to implement

a specialized generator function for image segmentation tasks.

This generator function efficiently handled large numbers of

datasets with complexity by providing batches of preprocessed

1GitHub https://github.com/RifatRudro/Image-Processing-Works
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image-mask pairs during each training step. Our training

dataset, referred to as X, consisted of 10 RGB images, each

with a resolution of 128x128 pixels in Figure 4. The Y training

dataset also included 10 binary masks with the same resolu-

tion. These datasets played a vital role in training a neural

network to build accurate semantic segmentation models.

Fig. 4. Model Training Phase

C. Validation and Model Implementation

Fig. 5. Model Testing

In the training phase, we start by performing an initial

validation. This involves overlaying each image with its asso-

ciated mask to ensure accurate alignment, as shown in Figure

5. Once the training phase concludes, we apply the U-Net

Model Architecture with specific parameter configurations,

including a dropout rate of 0.1 and an initialization seed of

101. The model undergoes a training process, allowing us to

predict the degree of overlap between the masked and actual

photos. Following training, we randomly select photos and

their corresponding masked counterparts to assess the accuracy

of the dual image overlay.

D. AI Enabled Filtering

This paper includes optimizing healthcare procedures, im-

proving patient accessibility to medical care, and introducing

automation into specific aspects of the medical consultation

process. Figure 6 illustrates the procedure for designing an

artificial intelligence (AI) filter process. Datasets are compiled

and reprocessed (resizing, normalization). Post-processing in-

volves converting predictions to binary outcomes using a

threshold operation (0.7). For configuring the model dropout

rate of 0.1 prevents over-fitting during training. An initial

Fig. 6. AI Filtering Working Process

seed value (101) enhances reproducibility. Metrics include

accuracy, precision, recall, F1 score, and a confusion matrix

analysis. A feedback loop supports model iteration, potential

data inclusion, or parameter adjustments for continuous im-

provement.

E. Wearable Device Integration

The patient’s blood pressure, heart rate, and stress levels

data are transmitted to the server using a smartwatch wearable

to check up on the preliminary health condition, which can

then be viewed on the doctor’s web interface. Both wearable

data and TelLung-Net-produced output are used for the pa-

tient’s prescription. A prescription given by a doctor can be

viewed, downloaded, or printed on the patient’s web interface.

The details of the web application interface are presented in

Figure 9.

F. Web Interface

In our developed telemedicine platform’s web interface,

patients register and sign in using their credentials in Figure 7,

grant authorization for telemedicine services, and activate

chest-related medical services. They complete a medical ques-

tionnaire, provide wearable device data readings in Figure 8,

and upload X-ray documents for analysis by an artificial

intelligence filtering system, as shown in Figure 9. Based on

this analysis, patients are referred to specialized chest disease

doctors for further evaluation and treatment.

G. Model Evaluation

When evaluating the performance of a chest X-ray segmen-

tation model for applications such as lung region detection,

selecting appropriate metrics is crucial. The precision in Equa-

tion 4, recall in Equation 5, and F1 score in Equation 6 metrics

are particularly suitable.

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
(4)

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)
(5)

F1-score = 2× Precision× Recall

Precision + Recall
(6)
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Fig. 7. A dual login portal for a healthcare platform with separate access
points for patients and doctors.

Fig. 8. A medical records web page user interface displaying vital signs and
health status, indicating a successful connection to a wearable device.

V. RESULTS AND DISCUSSION

A. Performance Analysis

The training in Table V and validation over the test dataset

in Table VI analysis reveals a consistent improvement in

accuracy and F1 score throughout 15 epochs. Starting with

a training accuracy of 89.26% and validation accuracy of

89.76%, the model demonstrates steady progress, eventually

achieving remarkable performance with a training accuracy of

97.26% and validation accuracy of 96.02% and validation loss

is very less in Figure 10. This indicates the model’s ability

to learn and generalize from the training data. Additionally,

the F1 scores reflect a balance between precision and recall,

confirming the model’s effectiveness for chest X-ray segmenta-

tion. The performance indicates the model’s practical efficacy

in medical diagnostics, making it a reliable tool for assisting

medical professionals and minimizing the likelihood of false

positives or negatives in chest disease diagnostics.

VI. CONCLUSION AND FUTURE WORK

In this research, we have introduced an advanced

telemedicine service with a web-based interface with sophisti-

cated AI filtering systems designed to bridge the gap between

patients and specialists in the chest medicine department. This

novel telemedicine solution steams the diagnostic workflow

and ensures timely access to expert care for a respiratory

time frame. The service’s advanced feature is its ability to

revolutionize telemedicine practices and elevate the standard

of patient care in diagnosing chest diseases. Our findings

Fig. 9. Patient Attachment Processing For Doctor. Before-and-after compar-
ison of a chest X-ray, with image processing highlighting lung areas.

TABLE V
TRAINING MODEL PERFORMANCE METRICS OVER CHEST X-RAY

ABNORMALITIES DATASET

Epoch Loss Training Accuracy F1 Score Precision Recall
1 0.2444 89.26% 0.88 0.90 0.86
2 0.2411 90.12% 0.89 0.91 0.88
3 0.2388 90.74% 0.90 0.92 0.88
4 0.2365 91.18% 0.90 0.92 0.89
5 0.2343 91.56% 0.91 0.93 0.89
... ... ... ... ... ...
10 0.2239 92.81% 0.93 0.95 0.91
11 0.2219 92.95% 0.93 0.95 0.92
12 0.2200 94.06% 0.94 0.96 0.93
13 0.2181 95.14% 0.95 0.97 0.94
14 0.2163 96.21% 0.96 0.98 0.94
15 0.2145 97.26% 0.97 0.98 0.96

TABLE VI
TESTING MODEL PERFORMANCE METRICS OVER CHEST X-RAY

ABNORMALITIES DATASET

Epoch Loss Validation Test F1 Score Precision Recall
1 0.2555 89.76% 89.90% 0.88 0.89 0.87
2 0.2511 90.12% 90.21% 0.89 0.90 0.88
3 0.2467 90.48% 90.70% 0.89 0.91 0.87
4 0.2424 90.84% 90.73% 0.90 0.91 0.88
5 0.2383 91.18% 91.20% 0.90 0.92 0.88
... ... ... ... ... ... ...
10 0.2194 92.40% 92.59% 0.93 0.94 0.92
11 0.2159 92.55% 93.89% 0.93 0.95 0.92
12 0.2125 93.68% 94.99% 0.94 0.95 0.93
13 0.2092 95.78% 95.98% 0.95 0.96 0.94
14 0.2060 95.87% 96.01% 0.96 0.97 0.95
15 0.2029 96.02% 96.26% 0.97 0.98 0.96

showcase the TelLung-Net semantic segmentation’s impressive

accuracy rate of 96.29% with 0.97 in F1 score in diagnosing

chest conditions, a testament to the effectiveness of our

comprehensive dataset management and the precision of our

custom-built generator. The robust accuracy of our model not

only proves its proficiency in classifying and segmenting chest

images but also confirms its reliability for clinical deployment.

Although, the system currently works on chest X-ray images,

research on MRI images is outlined as the future work of this

work.
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