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Abstract— The identification of surface level defects, such as
those in manufacturing materials, is crucial in industrial
processes. Deep learning methods have established their efficacy
in defect detection. However, these black-box classification
methods lack transparency, obscuring the rationale behind their
classifications. This obscurity becomes a significant concern in
safety-critical situations. Consequently, integrating explanatory
mechanisms into these systems’ classification results is essential.
This paper proposes a novel defect detection system based on
Explainable Artificial Intelligence (XAI). A conventional
Convolutional Neural Network (CNN) is employed to process an
image database of fabrics, showcasing various manufacturing
defects. This CNN, achieving a classification accuracy exceeding
93%, subsequently undergoes an interpretive analysis. To
elucidate the CNN's output, a statistical method grounded in the
SHAP (SHapley Additive exPlanations) value corresponding to
a feature in the examined image is employed. Additionally, an
alternative explanatory approach utilizing an unsupervised
neural network is explored. This entails the use of Self-
Organizing Maps (SOMs) to classify images in the dataset,
facilitating visualization of the data categorization.

Keywords—explainable artificial intelligence, SHAP, style,
self-organizing map

L.

The use of deep learning techniques like convolutional
neural networks to classify manufacturing outputs has been
well established. However, the interpretability of these
systems’ outputs remains a challenge, especially in safety-
critical applications. The uncertainty arising from the lack of
logic and trust in the outputs affects the usability of outputs of
such classification systems. It is therefore necessary to explain
the analysis of such outputs. One approach involves the use of
Explainable AI (XAI), where deep learning outputs are
explained using a variety of quantitative and qualitative
metrics. This approach builds trust in the output of a deep
learning classification system, but there are inherent accuracy
limitations given how the explanations themselves are also
derived or based on some form of machine or deep learning.
In this paper, a XAl approach based on using SHAP values to
interpret deep learning outputs is proposed. This is
complemented with the use of Self-Organizing Maps (SOMs)
that characterize the deep learning outputs, providing a visual
interpretation to the output of a deep learning model, further
helping in the understanding of the features contributing to an
output.

INTRODUCTION

For illustration purpose, we use the AITEX fabric dataset
[1] which includes textiles classified as either defective or
defect-free. Our deep learning analysis and subsequent
interpretation will revolve around the classification of whether
a textile has a defect or is defect-free, demonstrating the
efficacy of our proposed method in a practical scenario.
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II. LITERATURE REVIEW

XAI can be understood as making deep learning
interpretable. Deep learning outcomes are given
interpretations to allow an explanation of the deep learning
outputs to be given [1]. XAl increases trust in deep learning
outputs by providing the explanation behind the output of a
deep learning output. There is real world value in doing so.
Today, there are exploratory approaches towards the use of
XAI in medicine to explain medical images, respiratory and
cardiological data for diagnoses [2], [3]. This thereby reduces
the reliance on human classification, as well as provide basis
for insights that are not discernible by humans. In
manufacturing and maintenance, XAl has been used in the
justification of the predictive maintenance of critical
equipment, process optimization, and risk analysis [4]-[6].

Contemporary XAl technologies focus on approaches that
provide either quantitative or qualitative explanations. These
are achieved through rule-based or example-based analyses
[11, [2], [7], [8]. Rule-based analyses use statistical or
engineering methods to interpret deep learning outputs.
Example-based analyses are largely black box models that
provide explanations of deep learning outputs through the
further use of machine learning techniques [3], [9], [10]. There
are other XAl approaches that explain the output derivation
process (pre hoc interpretability), as well as approaches that
explain and justify the correctness of outputs (post hoc
interpretability) [11]-[13]. One notable post hoc
interpretability approach within XAI is the use of Shapley
Additive Explanations (SHAP) values [14], [15]. Compared
to other approaches that use quantifiable metrics such as the
Grad-CAM, the SHAP approach is one that is model agnostic,
and is not prone to being disturbed or influenced by anomalies
in the training dataset [16], [17].

SOMs, though not deep learning tools, are effectively used
for visualizing multi-dimensional data in a low-dimensional
grid. They simplify data by clustering similar inputs, making
it easier to interpret [18], [19]. Whilst SOMs, by virtue of
being a single-layer neural network are not capable of learning
hierarchical relationships within data, their key advantage lies
in their ability to process unsupervised data. There is no need
for the preparation of an extensive training dataset, unlike in
most deep learning algorithms. This makes it a good candidate
for the generation of global explanations of classifications
made by a deep learning system, with outputs produced being
able to be quickly visualized [20].

A. SHAP Values

Similar to how specific figures qualify the determination
of an outcome, the use of SHAP in XAI differs from other
classification  approaches that offer interpretable
classifications such as ‘robot imagination’. SHAP focuses on
defining the importance of each feature (e.g. how variations
in the fabric image captured can alter the eventual



classification output), rather than assessing feature
characteristics (e.g. how a fabric defect shown in an image
might affect the fabric’s strength), as is typically done in
techniques such as robot imagination[21].

In SHAP, the equations used in cooperative game theory
are used to interpret the classifications provided by a system.
They explain how an overall model prediction will change as
a result of interactions with other variables (or features, in the
context of an image), within the dataset. The key equation
used, one that derives the classic Shapley value, can be
represented as such as a weighted average of all possible
differences between a model trained with a feature present
and a model trained with the feature withheld [15]:

¢ =
ngm}%ﬁsl_m oot (xsugy) — ()] @
where,
¢;  Shapley value
set of all features
S features in set s
fsu{i} model trained with feature present
fs  model trained with feature withheld.

From this classic Shapley value derivation, one can then
proceed to determine the SHAP value. This value is used to
explain the output of a deep learning system. Reference [15]
defines this SHAP value derivation as:
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By enabling the individual consideration of the influence
one feature can have on the overall model predictions, SHAP
values can help uncover patterns and provide quantifiable
values to explain the rationale behind a model outcome [14].

Whilst SHAP values are not able to explain why a
component is deemed to be physically failing, it can
statistically explain why a component is defective, and even
localize the area of the defect. In other words, a key limitation
of the SHAP value in explaining the rationale behind a
particular explanation is how it is able to only establish a
relationship between a feature and the eventual classification
without contextual justification [22].

B. Self-Organising Maps

The concept of the explainable self-organizing map is built
upon the foundational structure of the self-organizing map. In
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a typical SOM, the reaction to a model’s input is generalized
and visually appears as a cluster or category of functions [19],
[23]. Briefly, this process can be described as such in Fig. 1.

Explainable Self-Organizing Maps (SOMs) are said to
provide both global and local explanations [19], [24]. Similar
to the use of SHAP values in XAl, they yield post hoc
interpretations of a model outputs. This is achieved via the
use of different means and requires a good appreciation of the
SOM training process described Fig. 1. Reference [19]
describes an approach for determining local explanations of
features found in a dataset by using the training process of the
SOM to explain deep learning outputs. As highlighted in [24],
this training process reveals the impact of specific variables
on the outcome of a deep learning model.

The potential of SOM in providing explainable global
explanations of phenomena is illustrated in [25], [26]. In [25],
clusters are plotted against chemical concentrations in water
to provide a visualization on predicted water quality.
Interestingly, [25] also provides an analysis on the use of
SHAP values as a secondary analysis to determine how
different chemical compositions will affect water quality.
This is also replicated in the work of [27].

The visual clustering approach of the SOM provides a
highly visual, yet easily understandable method of post-hoc,
deep learning outputs. Moreover, the SOM complements the
outputs of a SHAP-based XAl approach by corroborating the
statistical relationships that a SHAP analysis will bring about.

Initialisation: A grid of nodes representing
individual weight vectors is initialised

v

Weight initialisation: Random values are
assigned to the weight vectors

'

Neighbourhood function definition: A
neighbourhood function determining the
influence of training from winning node to
neighbours is defined
1

v

Training: Select random input vector from
dataset and find node with weight vector similar
to input vector. Update weights based on
neighbourhood function

Convergence

Yes

Fig. 1. Self-Organizing Map training process

[28] goes further to suggest how the visual clustering
interpretability offered by SOMs can be further enhanced by



using various statistical regression techniques to analyze the
classifications in the dataset. The strength of such an
approach is that it provides a quantitative assessment of the
rationale behind a classification.

This approach is mirrored in [29], where statistical or
optimization functions are applied to the dataset points in a
SOM. Similar to the statistical regression approach, the
application of these functions allow the confidence level of a
classification to be established arising from the quantitative
values derived from the functions.

However, such statistical or mathematical approaches will
require the identification of variables that will influence the
classification results, thus requiring some form of
supervision. Such SOM based XAI approaches thus lack
appeal in how they compromise the inherent unsupervised
nature of SOMs [28].

III. EXPERIMENTS

Two experiments have been designed to establish the
efficacy of applying both the SHAP and the explainable SOM
approaches in the context of XAl. These experiments revolve
around the use of either SHAP or SOMs as a means of
interpreting the output of a convolutional neural network
(CNN).

A. SHAP Approach

In this XAI approach, a CNN capable of performing the
object classification task was customized. This CNN was
established to be able to achieve an accuracy of up to 93%.
The architecture used is a three-layer CNN with the input
layer containing 64 filters of shape 2 x 2. The hidden layers
have double the number of filters from the preceding layer,
whilst the last layer, the sigmoid layer contains one filter for
the binary classification of a defect having a defect or no
defect. An illustration of the CNN is provided in Fig. 2.

@ Conv2D ' MaxPooling2D ' Dropout ' Flatten . Dense

Fig. 2. CNN used for classification

Following this CNN classification, the SHAP values of the
classifications were derived. These SHAP values were then
superimposed onto the textile, illustrating points on the textile
that either support or do not support the rationale for the
classification. Such a graphical approach provides
advantages over factor or rule based XAI approaches
discussed in [4], [6], [16] by virtue of being able to inherently
segment and isolate defective or anomalous areas of the
textile that contribute to its eventual classification.
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This was done by first creating a SHAP model based on
the training data used in the customization of the CNN. The
SHAP model was then used to provide SHAP values in the
test dataset, before these SHAP values were superimposed on
the original textile images. This SHAP model was derived
based on Equations 1 and 2, with the SHAP values being the
difference between the expected CNN model output based on
the presence of features within a training dataset and the
actual (ground truth) output.

Notably, in the test dataset used on this XAI model, all
misclassified images were false negatives. That is, although
a defect was present on the textile, the eventual classification
was a defect-free classification. In these false negatives, the
SHAP values obtained across the local features did not
support the resulting wrongful classification. Positive SHAP
values suggesting a correct classification were seen across
local features of these wrongly classified textiles. Whilst
contradictory, this suggests that there are underlying
contextual and model influences that ultimately resulted in
the wrong classification. These contextual and model
influences will include the unintended aliasing of the features
on the textile images as the images are being processed for
the purpose of passing through the CNN.

This is an important characteristic of the SHAP approach
towards interpretable classification outcomes. It serves as a
secondary method of establishing the veracity of deep
learning classification outputs. The SHAP values essentially
quantifies the probability of the presence of a defect on the
textile present on the textile, and its eventual influence of the
CNN’s classification. This is illustrated in Fig. 3. Red spots,
indicating positive SHAP values, on the textile highlight
points where the local features are identified to support the
classification of the CNN. Conversely, blue spots on the
textile, representing negative SHAP values, highlight points
where local features do not support the classification of the
CNN. Yet, there is an inadequacy in the form of how the
SHAP values merely give a relative metric of probability. In
other words, SHAP values across the different images within
the dataset allude to how a textile sample more be more
probable at being correctly classified compared to other
textile samples in the model, but does not provide an absolute
measure of if the textile is correctly classified.

Textile with defect correctly classified as defective

L

Textile with defect but not correctly classified as defective
13 -
81°3
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Fig. 3. SHAP values on correctly and wrongly classified textiles. The figure
illustrates how an increased prominence of red spots can be linked to the
increased probability of a textile being correctly classified as defective

B. Explainable SOM Approach

The presence of the false negatives despite SHAP values
that do not support the classification suggests the need for a
secondary approach to identify and manage explanations that
are inconsistent with their explanations. The explainable



SOM approach attempts to address this by first creating a
SOM of the image dataset. This SOM can classify if a textile
is defective or defect free. It is represented in Fig. 4.
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Fig. 4. SOM of AITEX textile dataset. Each number (1 or 0) represents a
textile. Defect free textiles are labelled as ‘1°. Defective textiles are labelled
as ‘0.

There is global interpretability of the dataset, evident from
the clusters of defective textiles centered across the top left-
hand corner and bottom right-hand corner of the SOM.
Supporting the false negatives seen on the CNN classification
that was explained by SHAP, there were several defective
textiles that resided within the no defect textile clusters. As
described in [19], this is where the SOM approach in XAl can
complement any CNN-based classification system by the
introduction of multiple SOM plots of features within a
dataset to establish the relationship between these features.
By plotting and identifying the Euclidean distance between a
neuron and its Best Matching Unit (BMU), across the
different SOM plots, a relationship suggesting the influence
of a feature within a dataset with respect to the eventual
classification can be derived. In the context of images, such
features can be introduced by the use of perturbations to the
images (e.g., rotation, flipping). This will also provide the
contextual justification that SHAP value explanations of
classifications lack, given how the post data augmentation
SOMs generated can provide such insights when the
relationship between the actions done to augment the image
and the influence on the eventual classification is established.

The approach used in [28] can also be adapted for
application to boost the interpretability of the results. This
was also done to quantify the strength of the classification.
Briefly, following the classification of the dataset into
defective and non-defective textiles, regression can be
performed using a variety of variables. These variables are
dependent on the SOM classification of the image, per the
concept of the ‘context aware representation’ described in
[28]. This will give an indicative quantitative confidence
level to a classification. In the defect-free textile
classification scenario, the number of blank pixels post
thresholding, indicative of voids within the fabric, can be
used as a variable to determine the strength of the
classification. In the converse scenario, the strength of the
image gradients, indicative of inconsistent fabric density, can
used to quantify the confidence level of the classification.
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The value add of such an approach will lie in how such an
approach is computationally inexpensive compared to the
earlier approach. Whilst it may require the presence of a
human analyst to determine and derive the insights related to
individual clusters and the empirical significance of various
SOM based relationships, it would be free of data biases or
overfitting that may be inherent in a SHAP based explanation
method.

IV. RESULTS AND DISCUSSION

The strength of both the SHAP and SOM approaches lie in
how they are both able to explain and quantify the level of
conviction of a classification output. The SHAP approach can
perform this quantitatively, whereas the SOM approach
performs this visually. The SOM approach can be augmented
with means that provide an interpretable and quantitative
level of conviction of a classification output.

In this, a key difference between the SHAP approach and
the explainable SOM approach towards XAl lies in how the
SOM approach is unable to perform semantic segmentation
of images, unlike in the SHAP approach, where features that
support or do not support a classification can be segmented
for highlighting on the actual image.

The use of the SOM is one that is unsupervised and does
not require any training datasets, unlike in the SHAP
approach, where a separate dataset is required for the
development of a model to generate the SHAP values
required for explaining the basis of a classification. This gives
the SOM approach the advantage of being able to produce
explanations in small datasets.

Whilst the use of various statistical methods to quantify a
SOM s classification adds interpretability to the classification,
there is less automation in this XAl approach. This is given
how individual variables need to be identified. Secondary
means of establishing the values of these variables will also
need development. Such development is context dependent.
Thus, specific customization will need to be performed for
every implementation of such an approach.

Through the process of identifying and isolating features
trained within a particular dataset to derive the SHAP value,
SHAP based XAI models are inherently more accurate when
training datasets are larger. The use of SOMs as a method of
explaining deep learning outputs is thus attractive when it
complements SHAP based XAI approaches with small
training datasets.

V. CONCLUSION

This paper has successfully demonstrated the application
of XAI techniques in identifying surface level defects.
Specifically, we focused on two approaches: the utilization of
SHAP values and the implementation of SOMs. Our findings
revealed that these approaches effectively complement each
other, offering a more comprehensive understanding of the
defect detection process. The SHAP value method provided
insights into the importance and impact of different features
in the classification decision, while SOMs offered a visual
interpretation of the data, aiding in the identification of
patterns and relationships within this dataset. The use of
context dependent regression explanations further enhances
the interpretability of SOM based classifications.



Our future work aims to expand the scope of these
methodologies. We plan to apply both SHAP values and
SOMs to more complex tasks, such as classifying various
types of defects within the AITEX dataset. We anticipate not
only enhancing the accuracy and efficiency of defect
classification but also gaining deeper insights into the
characteristics and nuances of different defect types. Our goal
is to develop a more versatile and reliable XAl framework
that can be applied to a wide range of materials and defect
classifications, contributing significantly to the field of
machine vision for manufacturing quality control.
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