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Abstract—The vibration damper is an important part that
can reduce the vibration of transmission lines. When it loosens,
falls off, or deforms, it needs to be replaced in time. Nowadays,
unmanned aerial vehicle (UAV) is often utilized to help detect the
faults of vibration dampers equipped on high-overhead power
lines for the sake of convenience and safety. Moreover, with the
continuous development of deep learning technique, convolutional
neural network (CNN) based methods has achieved a significant
progress in the fields of object detection and localization, defect
recognition, etc. For the vibration damper object detection, how-
ever, there is no large-scale public dataset available for training.
In addition, features such as the varying pattern of vibration
dampers, complex backgrounds, and mutual occlusion among
key components, limit the performance and actual application of
CNN-based detection methods for vibration dampers. Therefore,
in this paper we build a large dataset containing 38,295 images
collected with UAV and 22,252 annotation information files. In
order to detect the vibration dampers accurately, we propose a
RetinaNet optimization model based on the FreeAnchor method.
The optimization process is implemented from two aspects,
including data enhancement and model structure improvement.
The experimental results demonstrate that the optimized model
can outperform the original RetinaNet model and other classical
detection methods, reaching a relatively-high accuracy of 83.1%.

Keywords—vibration damper, object detection, RetinaNet, deep
learning, convolutional neural network

I. INTRODUCTION

UAV inspection of vibration dampers gradually replaces

the traditional manual inspection with the advantages of high

efficiency and safety. The large amount of inspection image

data generated by UAV inspections urgently needs to be

analyzed and processed. Relying on manual analysis of image

data is not only time-consuming and labor-intensive but also

prone to omission and misdetection. Therefore, the automated

analysis of image data and the use of deep learning methods

to improve the effect of fault identification has become one of

the hot spots in the research and application of smart power

grid operation and maintenance.

In several disciplines, deep learning technology has pro-

duced amazing outcomes [1]. Compared with the manually

designed features, the features extracted by using deep neural

networks to automatically learn high-level features from a

large amount of data are richer and more expressive, with

accuracy and robustness that traditional detection approaches

cannot reach [2-3].

Deep learning-based object detection algorithms are gen-

erally classified into two categories: the one-stage algorithms

and the two-stage algorithms. The representative algorithms

of the one-stage are SSD [4] and YOLO series [5], and the

representative algorithm of the two-stage is Faster RCNN

[6]. The main difference between them is that the one-stage

algorithm extracts features directly in the network and predicts

the categories and locations of all objects at once. The two-

stage algorithm, on the other hand, generates all the candi-

date anchors that may contain the object and screens them

according to certain rules. After that, detection is performed on

the filtered candidate anchors to obtain finer classification and

localization. To further enhance the feasibility of deep learn-

ing in industrial applications, especially vibration dampers

detection, researchers have done many studies. Their work

has shown that object detection using the convolutional neural

network(CNN) can greatly improve accuracy [7–10]. CNN has

three structural properties: local connectivity, weight sharing,

and spatial or temporal sampling. They allow CNN to have

some degree of translation, scaling, and warping invariance.

In addition to a better representation of the extracted features,

CNN can complete the extraction, selection, and classification

of features in only one model, enhancing the divisibility of

the features.

While existing work can reduce the inspection cost and

improve the inspection accuracy to a certain extent, they have

the following limitations:

• Limited Labeling Data. CNN training requires a large

amount of data to obtain better results, however, there

is no large-scale public dataset for training in the field

of transmission line inspection, and the amount of data

about vibration dampers in the current mainstream public

dataset is relatively small.

• Complex Background Interference. The background in-

cludes the sky, clouds, mountains, forests, grass, houses,

rivers, etc. The transmission line itself also interferes

with the extraction of vibration dampers information. The

complex background increases the difficulty of feature

extraction.

In light of these shortcomings, the main contributions of

this paper are as follows:
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• Vibration Damper Dataset Construction. The dataset

contains 38,295 images and 22,252 annotation informa-

tion files.

• Model Selection. By evaluating the detection speed,

accuracy, loss function, and other indexes, the RetinaNet

model that is most suitable for the vibration dampers

detection task is selected to realize the object detection of

vibration dampers, with an average accuracy of 77.2%.

• Model Optimization and Data Enhancement. To ad-

dress the problem of insufficient detection accuracy,

optimization is carried out in terms of data and model

structure. The second cleaning of all data is completed,

and the FreeAnchor method is introduced into the model,

optimizing the model accuracy to 83.1%.

II. PROPOSED METHODOLOGY

A. Datasets

Vibration Dampers are mainly used to prevent wire breakage

problems due to transmission line vibration, which is vital to

ensure safe operation. They are generally suspended below the

transmission line. They are small in size, with the dimensions

of length, width, and height generally ranging from 300mm

× 40mm × 40mm to 500mm × 60mm × 60mm, and their

main constituent material is silver-white cast iron. They are

available in a variety of different forms, as shown in Fig. 1.

Fig. 1. Different shapes of vibration dampers.

The vibration damper dataset constructed includes aerial

photographs of the vibration damper and its labeling informa-

tion. To ensure the richness of the data, the UAV selected di-

verse shooting backgrounds under different weather conditions

and took images of different sizes and occlusion conditions.

When making the dataset, the location and category of the

object need to be labeled and the corresponding XML file

needs to be generated. We use LabelImg software to complete

the labeling. The size of the occluded area should be estimated,

if the object is occluded by more than 2/3 of the area, it will

not be labeled, and the rest of the cases of occlusion will still

be labeled, as shown in Fig.

90% of the dataset images are randomly selected as the

training set and the remaining 10% as the test set. There are

a total of 38,295 images, divided into 35,000 for the training

set and 3,295 for the test set.

B. Modeling

The structure is shown in Fig. 2. RetinaNet consists of

the Residual Network (ResNet) [11], the Feature Pyramid

Network (FPN), and two sub-networks for bounding box re-

gression and classification, and utilizes Focal Loss to solve the

problem of imbalance of foreground-background categories in

traditional one-stage detectors.

ResNet introduces the residual structure, it allows the con-

volutional network to learn the residual mapping. In forward

propagation, the feature mapping contains less image infor-

mation layer by layer, and the addition of direct mapping

ensures that the network in layer i+1 will contain more

image information than layer i. A comparison of ordinary and

residual convolutional layers is shown in Fig. 3.

FPN is a feature extraction method capable of fusing multi-

layer features to improve the recognition of objects at different

scales [12]. The feature map constitutes a hierarchical relation-

ship from shallow to deep, with shallow features reflecting

details such as light, dark, edges, and so on, and deep

features reflecting the overall structure. RetinaNet, based on

the original hierarchical structure, merges the deeper features

into the shallower layers one by one to form a new feature

pyramid, so that each layer combines the information of the

details and the whole, reflecting comprehensive, as shown in

Fig. 4.

In the object detection algorithm, the anchor-selected object

is called the positive sample, and vice versa is called the

negative sample. Positive samples have core values, while too

many negative samples will have a negative impact on the

detection results. The object that is easy to distinguish from

the background feature information is called the easy sample,

and vice versa is called the negative sample. When there are

too many easy samples and very few difficult samples, it

will be unfavorable for training. Focal Loss is proposed to

dynamically adjust the weights in the RetinaNet algorithm

[13], solving the problem of serious imbalance between the

proportion of positive and negative samples and difficult and

easy samples in the one-stage detection algorithm. Focal Loss

is defined as:

FL (pt) = −αt(1− pt)
γ
log (pt) (1)

Where p is the predicted probability of the sample in the

category, αt is the positive and negative sample weights,

and (1− pt)
γ is the difficult and easy sample weights. γ

is a modulation factor, and the larger γ is, the lower the

contribution of the easy sample loss is.

FreeAnchor is a learning-based matching method that can

break the limitation of matching in IoU [14]. In the anchor-

based object detection algorithm, IoU is used to measure the

overlap between the anchor and GT. When IoU exceeds a

certain threshold, the anchor is considered to be used to predict

the object, otherwise, the anchor is considered as background.

However, in the case of very dense objects, the use of IoU

does not guarantee that the anchor points cover enough object

features.
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Fig. 2. The structure of our model.

conv

conv

conv

conv

H(x)

F(x) ReLU

x x

ReLU

F(x)+x

x

(a)                                      (b)

Fig. 3. Comparison of (a) Ordinary Convolutional Layer and (b) Residual
Convolutional Layer.
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Fig. 4. Feature Pyramid Network.
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Fig. 5. Schematic of IoU matching error.

Fig. 5 shows that after IoU matching, the algorithm believes

that the red box expresses more information about the object

due to its better score, however, in reality, the blue box

expresses more features than the red box even though it has

a lower score. FreeAnchor changes the manual setting of

matching rules to free anchor matching so that the network

can independently learn to select the anchor that best reflects

the characteristics of the object to match with GT, thus making

the matching effect optimal. FreeAnchor is defined as:

L(θ) =− w1

∑
i

log(Mean max (Xi))

+ w2

∑
j

FL−
(
P{aj ∈ A−}

(
1− P (θ)

bg
j

)) (2)

where Xi = {P (θ)clsij P (θ)locij |aj ∈ Ai}, P (θ)clsij is classification

confidence, P (θ)locij is localization confidence, Ai is all can-

didate anchor sets, FL− (p) is Focal Loss, the Mean−max

function is used to select the best matching anchor for each

object, and w1 and w2 are the weighting factors.

C. Data Enhancement

Rich and high-quality data play a key role in improving

modeling results, especially in avoiding model overfitting.

Data enhancement methods include data cleaning, scale trans-

formation, contrast transformation, noise interference, and so

on. Data cleaning is to re-check the labeling information of the

image to ensure that the labeling frame is close to the object

and to reduce the occurrence of omission and mislabeling.

Scale transformation is to zoom in or out of the image

using different ratios. Contrast transformation uses histogram

equalization to make the gray scale of the image uniformly

distributed within a certain interval. Noise interference means

noise superimposition on each pixel RGB channel of the

image. We enhance the existing data in terms of both data

cleaning and scale transformation.
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III. RESULTS

In the field of object detection, a commonly used evaluation

metric is mean average precision (mAP), which is used to

measure whether the model predicts the box category and

location accurately. The mAP is defined as:

mAP =

Q∑

q=1
AveP (q)

Q
(3)

where Q is the set of categories for object detection, and

AveP(q) is the average accuracy of the objects under the

computed categories.

A. Comparison of RetinaNet and other models

To better evaluate the performance of the RetinaNet model,

we use Faster RCNN, SSD, YOLO3 model, and RetinaNet

model to conduct comparison experiments.

TABLE I
COMPARISON OF MODEL TRAINING EFFECT

Model Category Backbone
Network

Network
Depth

Average
Speed/s mAP/%

Faster RCNN two-stages ResNet50 50 0.2994 73.7
SSD one-stage SSDVGG 16 0.2652 43.1

YOLO3 one-stage DarkNet 53 0.0648 62.1
RetinaNet one-stage ResNet50 50 0.2725 77.2

Table 1 provides the experimental results. The RetinaNet

model has the highest accuracy, the Faster RCNN model is

second, and the performance of the SSD model is much lower

than the other three models. SSD is poor due to its weak

semantic information of shallow feature maps and extreme

imbalance in the proportion of positive and negative samples.

Faster RCNN uses the region proposal network to generate

the candidate anchors. RetinaNet utilizes FPN. RetinaNet’s

special structure, Focal Loss, solves the problem of the severe

imbalance in the proportions of positive and negative samples,

as well as the proportion of difficult and easy samples.

Although it is slower than SSD and YOLO3 in detection speed,

it has the highest detection accuracy of 77.2%.

B. Comparison of the optimized and original RetinaNet model

To better evaluate the performance of the optimized model,

comparative experiments are conducted between the optimized

model and the original RetinaNet model, and the results are

shown in Table 2. After introducing the FreeAnchor method,

compared with the original RetinaNet model, the optimized

model improved the accuracy by 3.1% and 4.9% before and

after data enhancement, respectively. With the combined use of

data enhancement and the FreeAnchor method, the optimized

model achieved an accuracy of 83.1%.

Fig. 6 compares the average accuracy of the bounding

boxes(bbox mAP) of the original RetinaNet model and the

optimized model runs before and after data enhancement. The

bbox mAP of the optimized model is higher than that of the

original RetinaNet model, showing greater advantages.

TABLE II
OPTIMIZATION EFFECT OF THE MODEL

Model Backbone
Network

Network
Depth

Data
Enhancemen

Average
Dpeed/s mAP/%

original model ResNet 50 No 0.2725 77.2
original model ResNet 50 Yes 0.3832 78.2

optimized model ResNet 50 No 0.2923 80.3
optimized model ResNet 50 Yes 0.3479 83.1

FreeAnchor allows the anchor and the GT to be freely

matched according to the model performance during the

training process to represent more features of the object.

Therefore the optimized model based on the FreeAnchor

method performs better in the vibration damper detection task.
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Fig. 6. bbox mAP of original and optimized models, (a) based on original
data and (b) based on data enhancement.

IV. CONCLUSION

In this paper, we construct the vibration damper dataset

and complete the labeling, segmentation, and enhancement of

38,295 images. We propose two aspects of optimization ideas:

• Dataset Construction and Data Enhancement. We

carry out secondary cleaning on all 38,295 image data to

ensure that the labeling frame is close to the object and

reduce the occurrence of omission and mislabeling. At the

same time, the data is enhanced by scale transformation,

zooming in and out of the image.

• Model Optimization. The FreeAnchor method is intro-

duced to allow the anchor and the GT to be flexibly

matched based on model performance throughout the

training process, to better describe the object’s features.

The method proposed in this paper can achieve good

detection results. In comparison with other algorithms, the

RetinaNet optimized model based on the FreeAnchor has

significantly improved the detection results on the vibration

damper dataset we constructed.
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