
Towards a More Robust and Accurate OCR Model
with Adversarial Techniques in HMI Testing

Scenarios

Yupeng, Cheng
Nanyang Technological University

Singapore

yupeng.cheng@ntu.edu.sg

Zi Pong, Lim
Continental Corporation

Singapore

zi.pong.lim@continental-corporation.com

Sarthak Ketanbhai, Modi
Nanyang Technological University

Singapore

sarthak005@e.ntu.edu.sg

Yon Shin, Teo
Continental Corporation

Singapore

yon.shin.teo@continental-corporation.com

Yushi, Cao
Nanyang Technological University

Singapore

yushi002@e.ntu.edu.sg

Shang-Wei, Lin
Nanyang Technological University

Singapore

shang-wei.lin@ntu.edu.sg

Abstract—Test automation has become increasingly important
as the complexity of both design and content in Human Machine
Interface (HMI) software continues to grow. Current standard
practice uses Optical Character Recognition (OCR) techniques
to automatically extract textual information from HMI screens
for validation. At present, one of the key challenges faced
during the automation of HMI screen validation is the noise
handling for the OCR models. In this paper, we propose to
utilize adversarial training techniques to enhance OCR models
in HMI testing scenarios. More specifically, we design a new
adversarial attack objective for OCR models to discover the
decision boundaries in the context of HMI testing. We then adopt
adversarial training to optimize the decision boundaries towards
a more robust and accurate OCR model. In addition, we also
built an HMI screen dataset based on real-world requirements
and applied multiple types of perturbation onto the clean HMI
dataset to provide a more complete coverage for the potential
scenarios. We conduct experiments to demonstrate how using
adversarial training techniques yields more robust OCR models
against various kinds of noises, while still maintaining high OCR
model accuracy. Further experiments even demonstrate that the
adversarial training models exhibit a certain degree of robustness
against perturbations from other patterns.

Index Terms—OCR model, adversarial, HMI testing

I. INTRODUCTION

In automotive terminology, Human-Machine Interface

(HMI) refers to the technology and systems that allow inter-

action and communication between drivers and various elec-

tronic systems within a vehicle. The goal of a well-designed

HMI is to provide a user-friendly and intuitive interface that

enables users to control and interact with different functions

of the vehicle, such as infotainment systems, climate control,

navigation, safety features, and more [18]. Therefore, a well-

designed HMI becomes more important as electronic systems

are deployed in vehicles all over the world, among which car

dashboards as a particular example. Ensuring the meticulous

design of HMI software within the automotive sector is

CRNN: headphones CRNN: headohones

(a) Clear Input (b) Noise

Fig. 1: Influence of random noise against OCR model. (a) clear

input of image patch headphones. (b) input with a random

noise perturbation (maximum perturbation 0.1). The prediction

result of a widely used OCR recognition model CRNN [21]

is illustrated on the top of each image patch.

critical, given its direct impact on both user experience and

safety outcomes. Conducting comprehensive tests to verify

the design and functionalities of HMI software is thus of

paramount importance.

HMI testing is the systematic process performed on the

HMI products before they are delivered to customers, to

ensure optimal user experience and customer satisfaction. As

HMI products continue to grow in complexity nowadays and

incorporate a greater array of functionalities, the significance

of test automation has risen remarkably in addressing the

challenges presented by the labor-intensive nature of manual

testing procedures [24].

In the software testing workflow, the validation of the HMI

screens is a critical component to make sure the design and

the layout align with the customers’ requirements. The icons

and textual information are checked during this process. Cur-

rent HMI testing automation strategies use Optical Character

Recognition (OCR) to extract the letters and icons that appear

on the HMI screens. The extracted information will then

be verified with the requirement documents provided by the

customers[7]. However, as the HMI screens are embedded
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into the display clusters (car dashboards), testers typically de-

ploy additional hardware such as mounted cameras or frame-

grabbing devices to capture the HMI screens and send them

back to the computing devices for validation. The signals can

be easily affected during this process, resulting in unexpected

noises or perturbations in the captured images. Therefore, the

accuracy of the OCR model is greatly affected, making the

validation process less accurate and requiring more human

effort for manual checking.
Fig. 1 shows how noise can influence the text recognition

capabilities of an OCR model. The clear input yields a

correct recognition result headphones. However, when the

image patch is subjected to imperceptible random noise, the

prediction is misled to headohones. The noises are of a low

scale and are unable to be identified easily by the naked eye.

When this happens during the HMI testing process, human

testers need to abort testing to manually identify the root cause

for this issue, thus slowing down the overall test process.
A traditional method used in the industry to solve this

issue is by augmenting the training data with added noise

perturbations (e.g., Gaussian noise) before the training phase

of the model-based OCR. However in this case, although the

robustness against the added noise (e.g., Gaussian noise) has

been improved, the model still lacks resistance to other types

of noises [19]. It is also impractical to enumerate all types

of noises for image augmentation during the data preparation

stage. Therefore, a recognition model with good robustness

(against various kinds of noises) while retaining high accuracy

is required.
In order to overcome this, we propose utilizing adversarial

training techniques on model-based OCR to efficiently im-

prove its robustness. We first build an HMI dataset using the

asset files of an actual automotive HMI software, infused with

various kinds of noises that occur during the testing process.

Based on the HMI dataset, we apply white-box adversarial

attacks (a common adversarial attack technique that has unre-

stricted access to the model and its execution to better discover

the limits of the models [2] ) on the images to discover the

decision boundaries of the OCR model. We then train the

OCR model to improve recognition results with adversarial

examples (examples that lie around the decision boundaries).

To elaborate further, our method utilizes an adversarial attack

to discover the weakness of the OCR model and then adopts

adversarial training to focus on the weaknesses. Thus the

robustness against various kinds of noises can be improved

while maintaining high accuracy.
To summarize, our contributions are:

• We proposed using adversarial techniques on OCR mod-

els to improve its capabilities to resist noises. Adversarial

attack techniques are adopted to discover the adversarial

examples of the OCR model and adversarial training tech-

niques are utilized to specifically train the OCR models

on the adversarial examples to improve robustness.

• Following real-world industry requirements, we obtained

typical HMI screen designs and constructed a dataset that

contains HMI textual information. The dataset consists of

9883 HMI image patches. We also apply multiple kinds

of perturbation onto the clean HMI dataset to provide a

more complete coverage for the potential scenarios.

• Experimental results conducted on the HMI dataset re-

veal that adversarial training substantially improves the

resilience of OCR models to diverse noise types. Further

experiments even demonstrate that the adversarial train-

ing model exhibits a certain degree of robustness against

perturbations from other patterns.

II. RELATED WORKS

Optical Character Recognition (OCR) is a technology that

translates text from images into machine-readable text. It was

first mentioned in 1982 [13], where reading machines were

developed as devices to help the blind read.

More recent implementations of OCR include using

deep learning techniques such as Multi-Layer Perceptrons

(MLP) [9] , Convolutional Neural Networks (CNN)[20];

kernel-based methods such as Support Vector Machines

(SVM) [5]; statistical methods such as K Nearest Neighbour

(KNN) [16].

A recent survey [14], which has shown an overview of

OCR techniques and various phases such as acquisition, pre-

processing, segmentation, feature extraction, classification, and

post-processing, also mentioned that the employment of OCR

systems in practical applications still remains an active area

of research.

Adversarial techniques were first introduced by Szegedy et
al. [23]. The authors created adversarial states to manipulate

the network’s policy. They showed that even slight state

perturbations can potentially lead to very significant differ-

ences in terms of performance and decisions. Following that,

Goodfellow et al. proposed an efficient one-step method for

generating adversarial examples, known as the Fast Gradient

Sign Method (FGSM) [12]. Kukarin et al. [15] demonstrated

by using the Iterative Fast Gradient Sign Method (I-FGSM),

input-specific adversarial examples can be deployed in the

physical world in an untargeted attack if printed out and

carefully cropped. Dong et al. [10] promoted the Momen-

tum Iterative Fast Gradient Sign Method (MI-FGSM), with

the use of momentum in order to enhance the process of

creating adversarial instances while using iterative algorithms,

thus introducing a broad class of momentum-based iterative

algorithms to boost adversarial attacks. Diverse Input I-FGSM

(DI2FGSM) [25] is another example of the attacks that directly

build on FGSM. The main idea of DI2FGSM is to diversify the

input used in each iteration of the iterative FGSM by applying

image transformations, such as random resizing and padding,

with a fixed probability. This diversification is claimed to

facilitate better transferability of the resulting attack in a black-

box setup.

As for applications of adversarial attack techniques on OCR

models, Song et al. [22] have demonstrated that even state-

of-the-art deep learning-based OCR models are vulnerable to

adversarial images. Chen et al. [8] proposed a watermark

attack method to produce natural distortion that can yield a
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Fig. 2: Pipeline of Adversarial Training and Adversarial Attack. � Normal training process. � Adversarial training process.

� Adversarial attack.

set of natural adversarial examples and attain similar attack

performance to the state-of-the-art methods in different attack

scenarios.

III. METHODOLOGY

Our motivation lies in achieving enhanced robustness within

the training process while minimizing perturbation levels to

a degree imperceptible by testers. In real-life scenarios, ran-

dom noise typically occurs during graphics rendering, data

transmission or as a result of electromagnetic interference.

Augmenting the training samples using random noise can also

improve the robustness of OCR models. However, the impact

of adversarial attacks is not only more efficient but also more

effective [3]. To be more precise, when applying adversarial

training, the examples that lie around the decision boundaries

(hard/adversarial examples) will be selected (by adversarial

attack) and augmented for adversarial training. The adversarial

strategy ensures that difficult samples are consistently chosen

during each augmented training epoch, leading to the model’s

robustness being improved. On the contrary, when augmenting

with random noise, the samples are randomly selected and

augmented, leading to a high probability that these samples

remain inside the decision boundaries (easy samples), thus

making the training less efficient. Fig. 3 illustrates the effects

of random noise as well as adversarial attacks on the CRNN

model. It is easy to see that, adversarial attacks can achieve

a higher attack success with less perturbation, i.e., noise

scale. Thus, adversarial attacks are better suited to reveal the

vulnerabilities of the model.

To achieve this, we need to discover the decision boundaries

of the OCR model and then conduct adversarial training to

make the OCR model more robust. The whole pipeline of our

method is shown in Fig. 2. � in Fig. 2 represents the normal

training process where the clear input is directly taken from the

dataset without any augmentations. � in Fig. 2 represents the

adversarial training process where the adversarial examples

are augmented by the adversarial attack (� in Fig. 2). The

adversarial attack module is utilized to obtain the adversarial

examples. More specifically, it utilizes gradient to discover

decision boundaries and generate adversarial noises (added

to the input images, referred to as adversarial examples)

that mislead the OCR model. After obtaining the adversarial

examples, adversarial training is conducted based on these

samples to improve the robustness of the OCR models.

A. Adversarial Attack for HMI OCR
Given an image patch, e.g., X̂, we can view it as a

combination of a clear input X and a noise perturbation N
that originated from the data transfer or image acquisition

processes:

X̂ = X+N, (1)

When an OCR model is employed to recognize the charac-

ters embedded in X̂, a novel objective emerges. This objective

aims to mislead the OCR model through the implementation

of a well-crafted perturbation map N and thus discover the

decision boundaries of the OCR model.
The target of the adversarial attack is to find N, which

maximizes the loss in attack objective function [11], [10]:

argmax
N

(�(fθ(X+N),G)), subject to ‖N‖∞ ≤ ε, (2)

where fθ(·) represents the OCR model, G represents the

ground truth label, and �(·) is the loss function for character

recognition, e.g., the CTC loss. ε refers to the maximum

perturbation.
Generally, we solve Eq. (2) by sign gradient descent. Note

the number of attack iteration as T , and each pixel value in

N is updated for every iteration t:

Nt = Nt−1 + α sign(∇�Nt−1
), (3)
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Fig. 3: Evaluating the Impact of Gaussian Noise (gau) and

Adversarial Attacks (adv) on the CRNN OCR Recognition

Model. “Noise scale” is the maximum perturbation ε of each

pixel. Higher “attack success” refers to a larger influence on

the model.

where α is the step size of each iteration. sign(·) represents

the signum function. ∇�Nt−1 denotes the gradient of Nt−1

with respect to the objective function. By solving Eq. (2),

the adversarial examples (X̂) with the highest potential for

crossing decision boundaries can be identified. These adver-

sarial examples are used for adversarial training to improve

the robustness of the OCR model. 1

Fig. 2 � illustrates the comprehensive attack process

pipeline. It starts with the Clear Input X, which is initially fed

into the DNN model to generate prediction logits (blue bar).

Subsequently, the Loss function (green block) is computed

by integrating the logits with the encoded ground truth label

G (green bar). Ultimately, by employing the backpropagation

technique (red lines), we acquire the gradient of the input

layer, i.e., ∇�Nt−1 . After T iterations of updates, the ultimate

adversarial example X̂ is derived. Note that the adversarial

attack process bears a resemblance to training. However, in

contrast to updating the model parameters, the attack employs

gradients to generate adversarial noise in the input layer.

B. Adversarial Training

We now introduce adversarial training in this section. It

utilizes the capability of adversarial examples to expose the

weaknesses of the model, thus comprehensively enhancing the

model’s robustness. This approach goes beyond the limitations

imposed by the characteristics of typical noise distributions.

Specifically, given a clear input X and its corresponding

label G, a universal objective function of a normal training

process can be represented as:

min
θ

E(X,G)∼D[�(fθ(X),G)], (4)

where D is an underlying data distribution. As shown in Fig. 2,

the normal training process (blue) updates the parameters θ in

the OCR model by minimizing the loss.

1In the experiment, we choose α = ε/T .

Adversarial training aims to minimize the loss of the most

difficult examples. By incorporating Eq. (2) into Eq. (4), the

objective function Eq. (4) is rewritten as:

min
θ

E(X,G)∼D[max
N∈Ω

�(fθ(X+N),G)], (5)

where Ω represents the perturbation space. By incorporating

adversarial examples during the training phase, adversarial

training has been empirically established as one of the most

effective methods for enhancing the robustness of a vulnerable

model [17].

Once we have obtained the adversarial noise Ni−1 for a

clean sample X, we proceed to update the parameters of the

target model θ using gradient descent in i-th step:

θi = θi−1 + η ∇θ�(fθi−1(X+Ni−1),G), (6)

where η is the learning rate.

As shown in Fig. 2 � Adversarial training (purple block),

during the training process, we can conduct an adversarial

attack module (Fig. 2 �) and utilize the adversarial example

for the parameters updating.

In Section IV, we will perform experiments to showcase

the effectiveness of adversarial training in enhancing the ro-

bustness of the vulnerable model when compared with models

trained under normal conditions and data augmentation.

IV. EXPERIMENTS

In this section, we provide an in-depth analysis of our ex-

perimental outcomes aimed at showcasing the potency of OCR

adversarial attacks. We begin by presenting the construction

process of the HMI dataset in Section IV-A. Subsequently, we

elucidate the outcomes of our adversarial attack evaluations

in Section IV-B. Finally, we showcase the effectiveness of

adversarial training in Section IV-C. Section IV-D illustrates

and analyses some visualization results.

a) Dataset: In order to comprehensively assess the effi-

ciency of OCR models on HMI image patches, we constructed

a specialized HMI dataset utilizing a designated font asset. It

is important to note that we intentionally refrain from utilizing

publicly available generic OCR recognition dataset for our

evaluation tests. The rationale behind this decision will be

elaborated upon in the subsequent Section IV-A.

b) Model: In order to validate the efficacy of OCR

adversarial training in mitigating the effects of perturbations,

we opted for a robust OCR recognition framework, which is

the Convolutional Recurrent Neural Network (CRNN) [21],

incorporating a straightforward ResNet34 backbone archi-

tecture. More precisely, we employ three distinct training

methodologies for the ResNet34-based CRNN model: normal

training (NorTrain), adversarial training (AdvTrain), and

training augmented with Gaussian noise (GauTrain). Addi-

tionally, we trained a model with Gaussian blur augmentation

(GauBlurTrain), which serves as a baseline for evaluating

the robustness of AdvTrain against perturbations from other

patterns.
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Fig. 4: Examples of our HMI dataset and the corresponding

perturbations of word ‘setting’.

c) Perturbation: As we want to evaluate various noise

types in the testing scenario, we choose random Gaussian

noise [6] and Salt&Pepper noise [6] in our experiments to

measure the robustness of models as they have totally different

distributions. In the case of Gaussian noise, each noise pixel is

generated based on a Gaussian distribution. The “noise scale”

in this noise refers to the maximum perturbation. On the other

hand, in Salt&Pepper noise, certain pixel values within the

image are replaced with corrupted values, which can either be

the maximum value 255 or the minimum value 0. The “noise

scale” in this noise indicates the ratio of corrupted pixels.

Note that adversarial noise is also regarded as a perturbation

in the following experiments and the “noise scale” in this

noise means the maximum perturbation. Furthermore, for a

more comprehensive assessment of the impact of various

perturbations, we conduct experiments incorporating Gaussian

Blur and Motion Blur to evaluate their effects on the Additive

Adversarial Training model, i.e., AdvTrain. The term “noise

scale” in Gaussian blur and Motion blur refers to the standard

deviation and kernel size of the blur kernel, respectively. The

kernel size of Gaussian blur is fixed at 5.

d) Metric: In assessing the effectiveness of the adver-

sarial attack, we employ the attack success rate and noise

scale as metrics to evaluate the performance of a perturbation

technique. The formulation of calculating the attack success

rate is:

Succ.Rate =
Accclr −Accpert

Accclr
, (7)

where Accclr indicates the recognition accuracy of the OCR

model on the clear inputs, and Accpert refers to the accuracy

of the OCR model on the perturbated inputs. Note that a lower

attack success rate indicates a better robustness of a model.

e) Implementation Detail: In the HMI testing scenarios,

since we focus on the impact of cases that remain impercepti-

ble to testers yet significantly affect DNN models, we set the

maximum perturbation ε to values ranging from 0.02 to 0.25
for the Gaussian and adversarial perturbation. We also choose

the values for the noise scale to be from 0.025 to 0.2 for

Salt&Pepper noise. The attack iteration T is 10. The standard

deviation of Gaussian blur ranges from 0.5 to 1.0, and the

kernel size of motion blur ranges from 1 to 7.

A. HMI dataset

The OCR model trained in a conventional environment does

not consider variations commonly encountered in the HMI

testing scenario, such as changes in lighting conditions and text

distortions. Consequently, this leads to its inability to achieve

the highest recognition accuracy for the simple HMI image

patches using the smallest network structure.

Furthermore, the text recognition disparities between gen-

eral OCR and HMI testing scenarios are multi-fold. In typical

OCR recognition problems, the primary goal is to accurately

identify the text content. However, in the context of HMI

testing scenarios, the presence of variations such as rendering

errors, random noise and distortions are forbidden. In such

situations, the model’s requirement is not to be robust against

these variations but rather to be aware of the discrepancies

that are not permissible. It then serves to alert testing per-

sonnel to potential issues, such as problems with the display

color module or image transmission module. Conversely, the

model’s true necessity for robustness lies in a specific do-

main, e.g., imperceptible perturbations, which go unnoticed by

testing personnel. Thus, the exploration of HMI OCR model

characteristics necessitates limited robustness.

Guided by the principle of Occam’s razor [4], we employ

a compact network, e.g., ResNet34, and a proprietary HMI

dataset to assess the impact of adversarial attacks and gen-

eral perturbations. Specifically, we generate over 9883 image

patches that follow the HMI testing scenario. The words are

picked from a publicly available dataset [1]. Afterwards, we

apply multiple kinds of perturbation onto the clean HMI

dataset to provide a more complete coverage for the potential

scenarios. Fig. 4 illustrates several perturbation examples of

the word “setting”, including Gaussian noise, Poisson noise,

Speckle Noise, Gaussian Blur, JPEG Compression, Salt and

Pepper, Random Rotation, Motion Blur, Perspective Wrap,

Elastic Transform, and Padding. Moreover, the different per-

turbation scales are also applied in our dataset.

B. Evaluation of adversarial attack

First we showcase the potency of our attack by assessing the

performance of adversarial examples generated for a typically

well-trained OCR model using our HMI dataset. It is important

to emphasize that a stronger perturbation inherently yields a

greater impact on the OCR model’s predictions. Therefore, for

a meaningful comparison, we evaluate the attack success rate

while maintaining consistent levels of perturbation. To achieve

this, we fine-tune the noise scale for each type of perturbation,

resulting in attack success rate - noise scale curves that

facilitate clear and visually informative comparisons. Note that

Salt&Pepper noise is not included in this experiment due to

its inability to align with the perturbation evaluation criteria

used for the previous two types of noise. Specifically, we slide

the ε in Eq. (2) from 0.02 to 0.25 to tune the success rate.

Fig. 3 shows the comparison results on our HMI dataset.
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(a) Robustness against Gaussian noise. (b) Robustness against Salt&Pepper noise. (c) Robustness against Adversarial noise.

(d) Robustness against Gaussian blur. (e) Robustness against Motion blur.

Fig. 5: (a-c) Evaluation of the influence of Gaussian, Salt & Pepper, and adversarial noises against three trained models,

NorTrain, AdvTrain, and GauTrain. (d-e) The effect of blur perturbations, e.g., Gaussian Blur and Motion Blur, against

Gaussian Blur augmented training model GauBlurTrain and additive adversarial training model AdvTrain.

In general, higher perturbation leads to lower accuracy for

the OCR model. The model can resist perturbation with a low

noise scale. For example, the attack success rates of adversarial

attack and Gaussian noise are around 0% with the noise scale

lower than 0.02. However, the attack success rate rises rapidly

with the increase of noise scale. Moreover, the adversarial

attack shows high effectiveness in disrupting the recognition

accuracy of the OCR model. Concretely, in the blue curve

of adversarial attack, there is a rapid rise of attack success

rate from 1% to 97% when the noise scale increases from

0.02 to 0.05. However, the attack success rate of Gaussian

noise remains around 0% within a noise scale of 0.05. It

only achieves 87% with a noise scale of 0.2. The findings

suggest that adversarial attacks can conduct a more substantial

influence on OCR models through perturbations that are even

less perceptible. Visualization results will be illustrated to

demonstrate this conclusion in Section IV-D.

C. Evaluation of adversarial training

We can integrate the attack within the training process to

enhance the robustness of DNNs against additive perturba-

tions. This involves generating adversarial examples during

each epoch and subsequently updating the DNN parameters

using these augmented samples. To demonstrate the advan-

tages of adversarial attacks in enhancing DNN robustness,

we implement three distinct training strategies as introduced

in Section III-B. Specifically, we denote the ordinarily trained

model with Eq. (4) as NorTrain, the model trained with

Gaussian noise augmentation as GauTrain, the model trained

with Gaussian blur augmentation as GauBlurTrain, and the

adversarial training model AdvTrain.

We first train AdvTrain and GauTrain according to the

previous descriptions. Together with NorTrain, we evaluate

the robustness of the three models against random Gaussian

noise, difficult/Adversarial noise, and Salt&Pepper noise. This

evaluation involves adjusting the maximum perturbation ε
from 0.02 to 0.25 for the former two types of noise and the

noise scale from 0.02 to 0.2 for Salt&Pepper noise. Fig. 5

depicts the evaluation outcomes of the three models, yielding

the following observations: Firstly, the NorTrain model lacks

robustness against all types of noise. Its attack success rates

nearly reached 100% in the Gaussian noise with a noise scale

of 0.225, in Salt&Pepper noise with a noise scale of 0.125, and

in Adversarial noise with a noise scale of 0.075. Secondly, the

introduction of Gaussian noise augmentation during training

notably enhances the model’s resilience against Gaussian

noise. As shown in Fig. 5 (a), the attack success rate of Gaus-

sian noise against GauTrain remains steady at 1% even with a

heavy noise scale of 0.25. Nonetheless, Fig. 5 (b)&(c) indicate

that the GauTrain model remains susceptible to Salt&Pepper

noise and adversarial noise, albeit exhibiting slightly improved

robustness compared to the NorTrain model. Its attack success
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rate nearly reached 50% in Salt&Pepper noise with a noise

scale of 0.125, and in Adversarial noise with a noise scale

of 0.075. Thirdly, adversarial training effectively mitigates the

influence of all kinds of noise investigated here. As depicted

in Fig. 5 (a), the AdvTrain model demonstrates comparable

robustness against Gaussian noise to GauTrain. Specifically,

the attack success rate of Gaussian noise against AdvTrain
remains under 2% even with a noise scale of 0.25. As for the

robustness against Salt&Pepper noise, AdvTrain maintains an

attack success rate within 2% with a noise scale of 0.2. In

terms of adversarial noise perturbations, AdvTrain displays

resistance in comparison to both NorTrain and GauTrain.

Specifically, the attack success rate of adversarial attacks

remains at 0% with a noise scale of 0.1, while it exceeds

90% in the other two models at the same perturbation level.

To further evaluate the robustness of AdvTrain against other

perturbation patterns, we also test its recognition performance

on Gaussian blur and Motion blur. As shown in Fig. 5 (d)

and (e), GauBlurTrain exhibits the lowest attack success rate

when confronted with Gaussian blur, demonstrating the effec-

tiveness of training augmented with Gaussian blur. AdvTrain
also achieves a comparable robustness with GauBlurTrain.

It maintains a 0% attack success rate with the Gaussian blur

with a standard deviation of 0.8. However, when confronted

with motion blur, the GauBlurTrain model exhibits low

robustness against this perturbation, even weaker than the

additive adversarial training model AdvTrain. Specifically, as

shown in (e), when facing motion blur with a kernel size of 3,

AdvTrain still suppress the attack success rate to 0%, whereas

this perturbation attains an approximate 15% attack success

rate against the GauBlurTrain model.

D. Qualitative evaluation

In this section, we first visually demonstrate the robustness

of the three models against Gaussian noise, Salt&Pepper noise,

and adversarial noise using an example word ‘delayed’. Gaus-

sian noise is uniformly selected with a maximum perturbation

of ε = 0.125. On the other hand, adversarial noise is crafted

from three models, i.e., NorTrain, GauTrain, and AdvTrain.

It also employs a maximum perturbation ε = 0.125. Lastly,

the noise scale of Salt&Pepper noise is 0.1. In addition,

we present the recognition results of motion-blurred images

using AdvTrain and GauBlurTrain to assess their efficacy in

handling motion blur. The final results are presented in Fig. 6.

In summary, we make the following observations:

� All models correctly recognize the clear input. � In terms

of additive noise, as shown in (a), Gaussian noise starts to

impact the detection results of the NorTrain model. For ex-

ample, ‘delayed’ is falsely recognized as ‘delayedd’. However,

the deviations from the ground truth labels are not substantial.

On the other hand, GauTrain and AdvTrain, due to their con-

sideration of additive noise during the training phase, exhibit

robustness to such variations. � Salt&Pepper noise exhibits

a distinctly different characteristic distribution from random

Gaussian noise. This noise type directly sets some pixel values

to 0 or 255, making it more pronounced and significantly

impactful on the models. Notably, both NorTrain and Gau-
Train models experience instances of misclassification. For

instance, the word ‘delayed’ is erroneously identified as ‘de-

layedj’. � Adversarial noise significantly impacts NorTrain,

resulting in more severe recognition deviations. For instance,

‘delayed’ is recognized as ‘uabaxadllll’. Although GauTrain
also fails to accurately recognize these cases, its recognition

result ‘oelavecl’ is notably closer to the ground truth labels,

showcasing a certain degree of robustness against Adversarial

noise. Ultimately, AdvTrain, benefiting from the integration

of difficult adversarial examples during the training process,

exhibits enhanced resistance to adversarial attacks. � In terms

of blur perturbation, as shown in (b), the AdvTrain correctly

recognizes the motion-blurred word with kernel size of 3,

while GauBlurTrain failed by recognizing it as ‘deloyed’.

When the kernel size increases to 5, the recognition result

of AdvTrain, i.e., ‘dulnyud’, is more similar to the ground

truth ‘delayed’ than the recognition result of GauBlurTrain,

i.e., ‘ulilijuul’. These results indicate the significant robustness

of the additive adversarial training model, AdvTrain, against

perturbations with other patterns.

V. CONCLUSION

This paper has explored the promising topic of utilizing

adversarial training techniques to enhance the robustness of

OCR models in HMI testing scenarios, whilst maintaining high

model accuracy. By delving into the mechanisms of adversarial

attacks and their impact to OCR models, we demonstrated

their potential to expose vulnerabilities and weaknesses within

these models.

Our findings showed that OCR models trained using ad-

versarial training techniques perform better than the vanilla

model, and even the models trained with noise data augmen-

tation. In the experiments, the adversarial training model also

demonstrated a certain level of robustness even against pertur-

bations from other patterns. It underscored the significance of

adversarial training as a mitigation strategy, that fortifies the

OCR models against perturbations added during the collection

phase of the HMI images, and also contributed to a deeper

understanding of the models and the HMI images.

As the field of adversarial machine learning continues to

evolve, the insights and methodologies presented in this paper

serve as a stepping stone for further research and innovation.

Ultimately, by harnessing the power of adversarial attacks to

bolster the reliability and effectiveness of OCR models, we

move closer to achieving a more dependable and automated

HMI testing strategy in an increasingly digitized world.
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(a) Robustness against additive noise. (b) Robustness against motion blur.

Fig. 6: The recognition results of word ‘delayed’ are provided, including the clear version and perturbed samples. The

recognition result for each image is shown at the bottom. Correct predictions are indicated by green text, while incorrect

predictions are shown in red. (a) From top to bottom, each row corresponds to the clear input, Gaussian noise, and adversarial

noise, respectively. The columns labeled NorTrain, GauTrain, and AdvTrain indicate the model that generated the recognition

results in their respective columns. (b) From the top row to the bottom row, the three rows respectively represent a motion-

blurred image with kernel sizes of 1, 3, 5, and 7 (1 indicates clear image). The columns labeled AdvTrain and GauBlurTrain
indicate the model that generated the recognition results in their respective columns.
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