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Abstract—A well-established study of adversarial training
has been proposed to improve network robustness against ad-
versarial examples in the context of deep learning. However,
its performance highly relies on large-scale training data. To
relieve from such a data-hungry learning nature, we propose an
efficient extension of adversarial training by conducting a data
reduction method from a new perspective of generated data. The
reduced dataset can be regarded as an alternative pre-training
dataset, which promotes adversarial training methods for better
robustness even than the original dataset. Experimental results
and analyses demonstrate the effectiveness of our data reduction
method, achieving the same level of adversarial robustness with
a dataset volume reduced to 80% of its original size.

Index Terms—adversarial training, data reduction, generated
data, adversarial robustness

I. INTRODUCTION

Adversarial examples [1] can cause significant disruptions

of Deep Neural Networks (DNNs) [2]–[4] while maintaining

visual similarity to their natural counterparts. Previous works

have demonstrated the disruptive impact of adversarial ex-

amples across various domains, e.g., medical image analysis

[5], image manipulation [6], [7], and speech recognition [8].

Considering potential security threats induced by such tailored

examples, a series of defense methods have been proposed

to enhance the network robustness. Among them, adversar-

ial training [9]–[14], which adaptively augments adversarial

examples into the training dataset, has been demonstrated to

be the most effective method to heal network susceptibility

against unforeseen adversaries. However, the performance

of such a defense paradigm highly relies on a large-scale

dataset with considerable computational resources, hindering

its efficacy on small training data.

To relieve from the data-hungry nature of DNNs, existing

works either rely on (1) synthesizing a compact dataset to

maintain the same level of information w.r.t. its original coun-

terpart (dataset distillation) [15] or (2) selecting a subset of

the original dataset by pruning away redundant data that com-

promises the performance (data pruning) [16]. However, these

methods primarily cater to maintaining natural performance,

leaving a noticeable void in the context of adversarial ro-

bustness. Among the scant literature, [17] exhibits instability,

occasionally yielding results inferior to random subsampling.

Another approach [18] separately samples important training

Fig. 1. Overview of the proposed multi-step dataset reconstruction for
adversarial robustness. The reconstructed hybrid dataset is initialized by the
original dataset and subsequently updated according to synthetic data with
higher robust risk (composed of natural and boundary risks).

data from the entire training dataset for each epoch, imposing

unaddressed storage constraints.

Given the significant robustness improvement brought by

auxiliary generated data [19], we provide a new perspective

of data-efficient learning for adversarial robustness by recon-

structing the legitimate dataset with both original and gener-

ated data. Specifically, we decoupled the learning difficulty

of examples in terms of natural performance and adversarial

robustness, which can be interpreted as the importance of

training data. Considering the underlying redundancy inside

the original dataset, we propose a hybrid data reconstruction

paradigm guided by the auxiliary generated data. Furthermore,

the reconstructed dataset can be pruned to a representative

subset for better training efficiency. Empirical results show that

robust learning on our reconstructed dataset outperforms that

on the original dataset in terms of both natural performance

and robustness. In the meantime, data pruning based on our

reconstructed dataset also achieves better performance than

random selection without an additional storage budget.

II. ADVERSARIALLY ROBUST DATA-EFFICIENT LEARNING

In this section, we introduce our adversarially robust data-

efficient learning method based on a reconstructed dataset

guided by auxiliary data generated by the Denoising Diffusion

Probabilistic Model (DDPM) [20], as shown in Fig. 1.
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Preliminary: Consider a DNN classifier fθ : X → R
C with

network parameters θ to output predictions of C classes. For

a specific dataset (x, y) ∼ D, adversarial training [9] can be

described as the following minimax optimization problem:

min
θ

E(x,y)∼D

[
max

‖δ‖∞<ε
LCE (fθ (x+ δ) , y)

]
, (1)

where δ is the adversarial perturbation w.r.t. the clean example

x under the �∞-norm radius ε. Adversarial examples x̂ = x+δ
are obtained by maximizing the cross-entropy loss (LCE). The

outer minimization is to optimize empirical risks of obtained

adversaries over network parameters θ for better robustness.

In this paper, we primarily focus on reconstructing the origi-

nal training set to eliminate redundant data without resorting to

external knowledge. Despite the same data volume of original

and reconstructed datasets, training on the latter can achieve

better performance in terms of natural accuracy and adversarial

robustness. Specifically, we incorporate a synthetic dataset [19]

generated by a DDPM model trained on the original dataset.

The hybrid dataset is initialized by the original dataset at

the beginning of optimization. We then conduct a multi-step

dataset reconstruction based on the decoupled robust risk.

During each iteration, we first randomly sample a subset

of generated data and merge it into the hybrid dataset. To

investigate the impact of each data point on network robust-

ness, we then adversarially trained a classifier based on the

hybrid dataset. Afterward, we rank each data point based on a

convex surrogate of the decoupled robust (classification) risk

[10]. The hybrid dataset can thus be updated by top-K (size of

the original dataset) scoring images. Generally, robust risk in

the context of adversarially robust learning can be decoupled

into natural risk and boundary risk:

Rnat(fθ;D)=E(x,y)∼D[�(fθ(x) �= y)],

Rbdy(fθ;D)=E(x,y)∼D[�(∃x̂ ∈ B(x, ε) :fθ(x̂) �=fθ(x)=y)],
(2)

where B(x, ε) denotes the �∞-norm hypersphere with radius

ε around x. To measure the robust risk w.r.t. each example,

we propose a convex surrogate of both natural and boundary

risks based on the prediction-level distance as below:

Wnat(fθ;x) = σ(‖fθ(x)− onehot(y)‖2),
Wbdy(fθ;x) = σ(‖fθ(x)− fθ(x̂)‖2),

(3)

where σ(·) represents the sigmoid function, and onehot(y)
denotes the one-hot encoding of the label y. These prediction

discrepancies can also be interpreted as the fitting degree of

each example. In other words, we prioritize harder training

examples in the reconstructed dataset to enable hard example

mining for better generalizability. Through iterative updating,

more informative synthetic data are incorporated into the hy-

brid dataset along with the elimination of redundant examples.

To achieve further data efficiency, we also adopt the data

pruning strategy based on ranked weights of the reconstructed

dataset with the priority of examples with high robust risk.

III. EXPERIMENTS

Following the setting from RobustBench [21], we conduct

all the adversarial training experiments based on ResNet-18

TABLE I
COMPARISONS BETWEEN OUR RECONSTRUCTED HYBRID DATASET AND

ITS ORIGINAL VERSION VIA DIVERSE ADVERSARIAL TRAINING METHODS.

Method
Training

Data Natural PGD CW AA

PGD-AT
Original 83.80 51.40 50.17 47.68
Hybrid 83.76 52.44 51.69 48.95

TRADES
Original 82.45 52.21 50.29 48.88
Hybrid 82.53 53.21 50.91 49.73

N-FGSM
Original 80.18 48.17 46.96 44.26
Hybrid 80.23 49.72 48.31 45.41

TABLE II
COMPARISONS BETWEEN OUR HEURISTIC PRUNING AND RANDOM

PRUNING ON ORIGINAL AND HYBRID DATA VIA N-FGSM.

Training
Data

Pruning
Strategy

80% 40%

Natural PGD Natural PGD

Original
Random 78.52 46.93 72.76 42.39

Heuristic 78.07 47.75 72.16 43.25

Hybrid Random 78.46 48.10 72.78 43.30
Heuristic 78.97 48.82 72.95 44.08

on the CIFAR-10 dataset. For evaluation, we report classifica-

tion accuracy on adversaries generated by Projected Gradient

Descent(PGD) with 20 steps, CW, and Auto-Attack (AA).

As shown in Tab. I, we compare our reconstructed hybrid

dataset with its original counterpart based on their correspond-

ing performance achieved by diverse adversarial training meth-

ods. We can easily observe that training on our reconstructed

dataset outperforms that on the original dataset in terms of

natural performance and adversarial robustness. Recall that

the reconstruction of the hybrid data merely relies on the

original training set without using external knowledge. In the

meantime, the reconstructed and the original datasets are of

the same size, which guarantees a fair comparison.

For further data efficiency, we exploit the data pruning

strategy guided by both natural and robust discrepancies in

Eq. (3) to obtain lightweight subsets of our hybrid dataset.

We conduct a comparison between our heuristic pruning and

random pruning in Tab. II. Our heuristic pruning strategy is si-

multaneously effective in both the original and hybrid datasets

to eliminate redundant data points for better robustness.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel data-efficient learning

paradigm for adversarial robustness by reconstructing the orig-

inal dataset with generated data. We also design a decoupled

surrogate of the robust risk to guide data selection and pruning.

A limitation of our method is the static nature of DDPM

data; future work will explore robustness-guided, adaptive

data generation, and multi-objective prompt evolution [22] for

enhanced performance.
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