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Abstract—This paper presents the usage of a Bayesian network
to predict the delay of a given passenger train on the Belgian rail
network, trained with a year of arrival and departure records.
In order to improve the prediction of future delays, this paper
explores the possibility of incorporating the delays of other trains
that visit the same station. While the biggest improvement is to
be expected from looking at the train’s own delay in previous
stations, there’s a measurable improvement in the prediction
accuracy when secondary trains are taken into account.

I. INTRODUCTION

The Belgian rail network is one of the most saturated

transportation networks in the world. Every year, hundreds

of thousands of trains travel over more than eight thousand

kilometres of tracks. With more than 250 metres of track per

square kilometre1, there aren’t many countries in the world

with a denser rail network than Belgium2. At least half a

million Belgians rely on the NMBS/SNCB/NGBE3 to reach

their destinations.

Unfortunately, despite all efforts, the punctuality of the

SNCB remains one of its main complaints. The statistics

published by themselves suggest that each month, around

nine out of ten trains arrive on time.4 For such an important

part of Belgian mobility, this is a high failure rate. These

numbers are also disputed by transport advocacy groups and

passengers themselves, because suspended trains are not taken

into account, and "on time" means that it arrived at the

terminus with a maximum delay of six minutes.

When a train is delayed, the SNCB currently uses a best-

case scenario for the remaining itinerary; in each subsequent

station, the train is assumed to reduce its delay by up to two

minutes. The solution’s biggest advantage is that, this scenario

1https://infrabel.be/nl/facts-figures
2https://en.wikipedia.org/wiki/List_of_countries_by_rail_transport_

network_size
3Nationale Maatschappij der Belgische Spoorwegen / Société Nationale des

Chemins de Fer Belges / Nationale Gesellschaft der Belgischen Eisenbahnen.
The railway company prefers to use the French abbreviation when communi-
cating in a non-Belgian language, and this will be used in this paper as well
in light of this preference.

4https://infrabel.opendatasoft.com/explore/dataset/
nationale-stiptheid-per-maand/table/

guarantees passengers that arrive at the station before the "pro-

jected" departure time, will not miss their train.5 However, the

main shortcoming is that this scenario practically never occurs,

and it is much more likely that the delay actually increases

over time. Consequently, this also frustrates the scheduling of

other trains; as if the projected delay time seldom corresponds

with the actual delay, the rail traffic controllers cannot make

informed decisions on how to mitigate a projected delay as

well as possible. In rush hour, this can escalate quickly to

other trains as well. Moreover, another disadvantage is that this

makes passengers hesitant to explore alternative travel options

that might get them to their destination faster than the original

route.

In fact, the useful delay predictions are difficult to obtain

because there are a lot of uncontrollable factors in play.

Considering the stringent safety procedures that are in effect at

the SNCB, this could explain why they are using the aforemen-

tioned scenario for communicating delays with passengers.

This paper explores the possibility of a better delay predic-

tion method, one that not only takes into account the delay

of a train itself, but also the delay of other trains on the

network. The hypothesis being evaluated is that a train’s delay

is partially influenced by the delay of other trains. Examples

include trains blocking the same tracks and having to wait

on a connecting train to facilitate a transfer. Thus, we propose

the selection of these so-called informative trains as contextual

information in machine learning applications. We support this

proposition by investigating and quantifying the usefulness of

informative trains, as opposed to only taking the delay of the

main train in the previous station into account.

The next section provides a brief literature study of related

research. In section III, we will discuss Bayesian networks

and explain our choice for this technique in lieu of other

5SNCB train drivers are permitted to depart from a station if the scheduled
time of departure has passed, regardless of what is presented in the live data
feeds to passengers. So in theory, if a more realistic scenario predicts a 10
minute delay, but the train actually manages to reduce the delay to 8 minutes,
a passenger that’s 9 minutes late "on purpose" would miss the train, despite
what was communicated.
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approaches. After that, the nature of the data itself and the

processing methodology is discussed. The last sections of the

paper discuss the obtained results and anomalies, and some

thoughts about future work that could improve on this paper’s

findings.

II. LITERATURE REVIEW

Trying to predict delays of public transport with artificial

intelligence is a topic that has received a decent amount of

research already. This section takes a look at related papers

and discusses them briefly.

Lessan, Fu, and Wen showed that delays in a train route

can be accurately predicted using Bayesian networks (BN).

[1] The authors compare a set of different BN schemes. They

also correctly remark that a BN structure that takes domain

knowledge and expertise into account is able to outperform

structures that do not. The structure and goal of their work

closely resembles that of this paper, which allows for building

the same benchmark. This will be explained when discussing

the obtained results.

The authors make an explicit distinction between the arrival

and departure delay of the examined train line. While there

are valid arguments to do so, we focus on the departure time

and forego the arrival time entirely (except for the terminus

station).

In the first stage of our research, we compared the departure

and arrival times, which revealed that there’s a direct linear

correlation between both values.6 We seek to improve the

results through non-linear correlations.

The hypothesis that delays on railways are related to prob-

lems on the rail network elsewhere is not new, and has already

been researched by Ulak, Yazici, and Zhang, who also relied

on Bayesian network learning. [2] The authors however did

not focus on predicting the delays themselves, but rather on

the cause-effect relationship; which stations induce delays, and

which ones are susceptible to them. The data used for this

was collected using an opt-in feature in a passenger transit

information application. Because prediction was not the focus

of this research, the authors discarded more than 85% of the

data samples, only choosing the logs that were last made

before arriving at any given station. While this might be a

decent strategy for metro rail networks, it is possible this

technique does not hold up for normal rail networks7.

Tiong, Ma, and Palmqvist created a review of several

different papers that aim to predict train delays with a data-

driven approach. [3] What is clear is that the operational level

is the most popular scope8. What makes this paper interesting

6While this correlation also exists between different stations, there’s a much
larger variance in the values, which implies that there are more factors in play
that are unaccounted for. The final results suggest that other trains make up
a part of those factors.

7The main difference between a metro and a "normal" train is that metro
railways do not have level crossings and their infrastructure is exclusively used
for the metro itself. This is often accomplished by grade seperation, which
explains the frequent use of tunnels in urban areas and viaducts in suburban
areas.

8The scope of this paper can also be classified as operational level.

to mention is that it shows why it is not practical to have

a common benchmark amongst related research: All papers

use a unique dataset, all with vastly different properties. This

provides an opportunity for future research; trying to compare

the results of different papers with each other could give

closure about the actual effectiveness of different tools and/or

algorithms.

While many papers rely on domain knowledge to improve

their results, others choose to rely on randomness to discover

correlations that might otherwise go unnoticed. Li, Wen, Hu, et
al. use a random forest regression model to predict train delays

up to 20 minutes into the future. [4] While the authors report

a high prediction accuracy, it should be noted that weekends

were excluded from the training data. Whether or not this has

a negligible effect on the results is unknown.

More recent papers have also relied on Bayesian networks.

The work of Huang, Spanninger, and Corman shows that,

while Bayesian networks are a useful model, the usage of

clustering algorithms also has a positive effect on the accuracy

of the predictions. [5] The delays of trains would be clustered

by their delay evolution, which indeed seems like a good

approach, because it’s very plausible that delays can evolve

in different ways depending on their cause. But as mentioned

earlier, it’s hard to compare results with other papers, as the

authors also use a custom dataset that’s not publicly available.

Shi, Xu, Li, et al. didn’t use Bayesian networks, but

Bayesian optimization, which is a very different technique. [6]

This, in combination with XGBoost, was then compared with

some other models, and was shown to perform favourably.

The authors acknowledge the idea that the delay of a given

train can influence the delay of another train, and it’s one of

the only papers to explicitely show this behaviour through an

example. However, the variables they use in the model do not

seem to take this into account. Instead, they rely on this latent

information being available through the other variables they

do include.

III. BAYESIAN NETWORKS

A. Properties

In order to show the improvement that multiple trains

can provide, the model used in this paper is a Bayesian

network. A Bayesian network (BN) consists of nodes and

directed edges, respectively representing random variables and

causalities. BNs belong to the family of graphical models,

which are popular choices when there are good reasons to

assume that different random variables have an influence over

each other.[7] When these influences are unclear, it is possible

to discover them through structure learning.

The way BNs work is by exploiting conditional indepen-

dences (CI) for representing the joint distribution of all the

random variables. Say a hypothetical system that can be

described using random variables A,B,C, ...,Y,Z, with each

letter being conditioned by the previous letter (e.g. B is

conditioned by A and only A). Representing the full joint

distribution, even assuming all are boolean variables, would

give 224 = 16777216 entries, and learning would require data
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for the same amount of parameters.

By exploiting CI, it is possible to reduce the size of the rep-

resentation considerably, since p(B|A,C,D, ...,Y,Z) = p(B|A).
In this particular example, exploiting CI means the we can

use a factorized representation that only requires 24 ·21 = 48

entries, still providing the same expressive power.

This is one of the main reasons for choosing to use BNs in

this paper, but there are other advantages compared to other

models such as neural networks:

• BNs are often more interpretable than some complex ma-

chine learning models. The graphical representation of the

network makes it easier to understand the dependencies

between variables and the reasoning behind predictions.

– For our paper, this is especially important, because in

order to clearly show the added value of secondary

trains as contextual information, being able to man-

ually "disable" particular nodes is a necessity.

• BNs can be updated dynamically as new data becomes

available. This is advantageous in transportation systems

where conditions may change over time, and the model

needs to adapt to new information.

• BNs are relatively fast AI models, both during training

and evaluating. Together with their ability to be under-

standable for laymen in how they operate, this makes

them prime candidates for actually deploying them in real

world applications.

That is not to say that BNs are without disadvantages.

For one, they require a substantial amount of data to be

useful. With smaller datasets, a BN cannot properly get rid

of uncertainty, resulting in worse error scores than one can

obtain with other models.

From a practical standpoint, there are also significantly fewer

libraries with support for Bayesian networks. This limits

adoptance in other projects, which in turn makes it harder

to find solutions for problems that may occur during usage.

Figure 1 shows how the railway network is transformed

into a BN. We chose to focus on the IC-05 train line between

Antwerp-Central and Charleroi-Central, a relatively busy route

that goes through four Belgian provinces and the capital city

of Brussels. Brussels itself is especially interesting because of

the special regime put in place to handle the large amount

of traffic in the North-South connection: Cargo trains are

prohibited from entering, whereas passenger trains are allowed

to enter the tunnel in rapid succession (up to less than one

minute from each other during rush hour), and the usage of

the switches on the route is limited as much as possible to

avoid any crossings, which would block at least two tracks

for a single train. Also important is the fact that IC-05 has a

very invariate time schedule; every day, there is one train per

hour that arrives at the same minute in each station.9

Even though we’re focusing on one particular train line,

applying the described technique to other train lines should

not pose any big challenges, since the process of building the

9https://www.belgiantrain.be/-/media/files/pdf/support/riv/ic-leaflets/fr/
ic-05-dec2023-fr.ashx

BN is analogous to the one in this paper. That means that

it’s definitely possible to expand the prediction to more trains

across the Belgian railway network.

B. Random variables

As mentioned earlier, the nodes in a BN each represent dif-

ferent random variables, and the edges between them represent

the causality of those variables with relation to each other.

Typically, the random variables are modelled as discrete

events. For example, the throw of a die is a random variable

X with six discrete events, with

∀x ∈ {1,2,3,4,5,6} : P(X = x) =
1

6
(1)

For BNs with a small Markov blanket10 size, this is hardly

a problem, as the computational complexity stays low enough.

However, this would pose problems with our particular appli-

cation: Each delay of each train in each station is represented

as a separate node, and the delays are in seconds. If we were

to represent each second as a discrete event, one would end

up with hundreds of possible events per node. Of course, it’s

possible to use intervals as discrete events instead of each

second separately (i.e. "binning"), but even that’s not enough.

The joint probability of n binary values needs

O(n ·gk) (2)

terms, with g the amount of categories and k the maximum

number of parents of a node. This would put a technical limit

on the amount of trains that can be taken into account; if

the delays are categorized per minute, and limited to just 10

bins, the factorized representation of a BN would reach in the

millions. There is also the fact that categorizing continuous

values comes with a decrease in accuracy as well.

In this paper, a slightly more complex type of Bayesian

network is used, the Gaussian Bayesian network (GBN). [8] In

these networks, the nodes do not represent a probability table,

but a Gaussian distribution. The distribution of a child node is

then constructed by a multivariate Gaussian distribution, built

using the distributions of the parent nodes.

This offers a lot more flexibility and decreases the network’s

computing complexity substantially.

C. Loss function

Evaluating artificial intelligence (AI) models is often done

by using a so-called loss function. In this paper, the loss

function mainly serves as a measure to compare different

models with each other.

For GBNs, there are only a couple of loss functions avail-

able:

• (Gaussian) Log-likelihood loss (log-loss): Returns the

joint probability of the test data based on the parameters

of the trained model.[9] This loss function is especially

suited when using maximum likelihood estimation (MLE)

10A Markov blanket of a node is the only knowledge needed to predict the
behavior of that node. This consists of the node’s parents, its children and the
co-parents, if applicable.
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Fig. 1. Visual diagram of how the relevant railway network is transformed to a Bayesian network. We want to predict the delay of train line IC-05, which
travels between Antwerp-Central and Charleroi-Central. Each station on the route is also frequented by other train lines. The hypothesis is that the delays on
these train lines also have an influence on the delay of IC-05. First, the delay of each line is transformed into a node, one for each station that train line
frequents. Then, the delay nodes of IC-05 in each station are connected to the node of the next station, representing the (trivial) influence of the last recorded
delay. Finally, the delay nodes of other train lines are connected to that of the IC-05 node in the same station. This results in the graph that’s being evaluated
in this paper. (Note that there are many more lines per station, but these are not shown here in order to keep it clear and concise.)

during training, because maximizing the MLE is equiva-

lent to maximizing the log-likelihood.

• Predictive correlation: Calculates the correlation between

the predicted and actual value in a given node.[10]

• Mean squared error: Sums the squared difference between

the predicted value and the actual value. This sum is then

divided by the amount of data samples to get the mean

value.[11]

It is hard to explain how predictive correlation reaches a

given score; the source being referenced[12] in the docu-

mentation does not include this concept, and to the best of

our knowledge, this technique has not been systemetically

described. Therefore, we decide to look at the remaining two

loss functions.

A major property of MSE is its sensitivity to outliers. Often,

this makes one search for alternative loss functions, but here,

it is a desired effect: Small deviations from the actual delay

are not a big problem, but the higher the error, the heavier it

should be penalised.

Another interesting property is that MSE measures the

prediction error in a single node, in contrast to log-loss.

This makes it possible to discover discrepancies between the

different stations, which might remain hidden with log-loss.

These arguments made the choice for MSE the best one in

our opinion.

IV. DATA PROCESSING

Machine learning is only possible with a large dataset of

which the content is sampled independently and identically

distributed from the real world. These requirements seem to

be fulfilled by the punctuality data of Infrabel, the Belgian

railway network operator. The total size of the dataset used in

this paper is 2GB, and contains all passenger trains of 2018,

with the arrival and departure delay in each station measured

up to the second, as shown in figure 2.

This data comes in the form of CSV files that are available

under the CC0 license on Infrabel’s open data website.11 The

Pandas library was used to filter the available data and create

a new dataset that could be used for training the Bayesian

network.

1) all the data records are bundled per itenerary. This results

in many data subsets that each describe a single route,

and each record describing a single stop.

2) The IC-05 iteneraries are kept separate; this is the line

the model will focus on12.

3) For each stop in each IC-05 itenerary, the remaining

dataset is checked; all trains that have a scheduled arrival

within 15 minutes of the IC-05 train’s arrival in the same

station, is considered as a "possibly influencing train".

By applying these steps to the Infrabel data, we can create a

dataset consisting of 3955 samples. Figure 3 shows an excerpt

of those processed data samples.

V. RESULTS

Gaussian Bayesian networks do not seem to enjoy the same

level of interest as their discrete counterparts, as is reflected

in their respective support in software libraries. The only

technically viable choice was the bnlearn package for the R

programming language13.

The GBNs are trained and evaluated by using 10-fold cross

validation with random sampling. This means that each run,

11https://infrabel.opendatasoft.com/explore/dataset/
stiptheid-gegevens-maandelijksebestanden/information/?sort=mois

12Although the model here is specifically tailored to the IC-05 line, the
same methods can be applied to any other train line.

13https://www.bnlearn.com
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Fig. 2. Snippet from the raw data in the database. pt_car refers to the code of a particular station on the network. Each record pertains to one train in one
station/checkpoint. The arrival_delay and departure_delay are in seconds and are to be summed with the scheduled counterparts. Negative values
indicate a train arriving/departing earlier than scheduled.

Fig. 3. Processed data snippet from the entire training set. Each column represents a feature, and is a separate node in the Bayesian network. The row
represents the delay of each train in a particular station. The columns shown are the delays of IC-05 (in capital letters) and of secondary train lines. Note that
the arrival delay is zero, because Antwerp-Central is a starting station for many train lines.

~3600 records are used as training set, and 400 serve as

unseen testing data, after which the average score of all runs

is returned. Because of the random division in training and

testing sets, this process is repeated 100 times for each station

node. This provides both an average score and a standard

deviation metric.

In order to confirm the expected improvements, not all

edges as shown in figure 1 were immediately enabled. Instead,

a particular order of enabling nodes was used. This order

is based on our assumptions of how informative each event

would be for predicting the correct delay for IC-05, and the

MSE should be strictly descending in each information level.

These information levels (called "steps" from now on) are:

1) No information. The delay of a train is said to be

completely devoid of any influence, not even the delay

in the train’s previous station.

2) Delays of all incoming trains, still excluding the delay

of the main train (IC-05)’s previous station.

3) Delays of trains that are deemend informative, still

excluding the delay of the main train’s previous station.

4) Only the delay of the main train’s previous station.

5) The delay of informative trains, together with the delay

of the main train’s previous station.

"All incoming trains" is a set, consisting of the trains that

are scheduled to arrive or depart within a time window of [-

15,15] minutes, relative to the scheduled arrival time of an

IC-05 train.

What constitutes an "informative" train is the result of a

bottom-up approach: Starting from step 1 (no information at

all), each non-IC-05 node is enabled one at a time. Each time,

the MSE is compared to that of the MSE in step 1. If the new

MSE is significantly lower (at least a couple of percent points

relative to having no info), then that node is marked as being

"informative". There is no limit on the amount of informative

trains that we select.

The results that were obtained this way are shown in table I.

It contains the scores obtained per station, per step. Figure 4

visualises the same information in a diagram, which reveals

some interesting things about the data.

There is no relation between the trains that were found

informative; sometimes the local trains were more useful, other

times the intercity trains, and also a mixture of the two occurs.

One of the most obvious observations is the enormous

improvement when we take the delay in the previous station

into account. This makes a lot of sense; if a train departs with

x minutes of delay, it is very likely it will arrive with a delay

close to x in the next station. On average, the loss decreases

from 108695 to just 10869.

Another observation is that, even when we do not use this

information, and only rely on the delay of other trains, there’s

still often a noticeable improvement in the delay prediction,

a decrease from 174106 to 121817 in the average loss. Only

relying on the informative trains (step 3) also reveals the model

learns from all the data, but in doing so, tends to overfit on

trains that are not informative to the final prediction. This is

clearly visible with the improvement going from step 2 to 3,

an average loss of 121817 to 112839. This is to be expected

from machine learning, and shows that domain knowledge is

an important factor for any model to reach the ground truth.

However, even in step 2, there’s already an improvement, most

likely due to large calamities that affect a lot of different trains

simultaneously.
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TABLE I
RAW MEAN SQUARED ERROR SCORES FOR EACH INFORMATION LEVEL PER STATION, LOWER VALUES ARE BETTER.

Station name No info All trains Informative trains Previous delay Informative + delay
Antwerp-Central 88160.97 34007.66 33792.04 N/A N/A
Antwerp-Berchem 103003.80 61152.12 65980.84 6114.48 6077.08
Mechlin 157187.60 77464.27 77011.90 21135.73 14591.74
Brussels-North 187577.70 99280.91 89840.65 17304.48 18108.03
Brussels-Central 197091.80 102349.50 90129.31 2563.27 2640.98
Brussels-South 188398.30 118511.50 102491.10 8053.87 7323.94
Braine l’Alleud 206332.30 117234.70 117234.70 32172.25 33687.31
Nivelles 198920.70 125921.40 111750.10 6305.28 5794.42
Luttre 194622.20 200325.40 206224.90 5713.81 5528.98
Marchienne-au-Pont 193002.40 190860.50 191544.40 6166.07 5873.10
Charleroi-Central 200874.20 212881.40 155235.40 3165.97 3002.17

Step 4 is considered as the baseline model, because this

"amount" of information is also being used by Lessan et al.
[1] By copying the methodology from their peer-reviewed and

published paper and applying it to our dataset, we obtain

the baseline scores that our proposed methodology ought to

improve upon. If taking other trains into account does improve

on this score, then our hypothesis would be validated. Since

this paper intends to improve upon the current state of the art,

the score in step 5 should be better than the score in step 4.

This seems to be the case, as the average loss decreases from

10869 to 10262.

The final important observation is thus that combining infor-

mative trains with the main train’s earlier delay often does

give a slight improvement to the overall score. The scores in

step 5 seem to support the hypothesis that taking into account

the delays of other trains improves the predictive capability of

the model.

There are also some deviations on the continuously declining

score, the most noteworthy example being Brussels-North

and Brussels-Central. This can be explained because of the

business of the North-South tunnel; this particular section of

the Belgian railway network handles 1200 trains per day, and

special regimes and protocols are put in place to handle the

special circumstances of this corridor. It Is likely that these

protocols decrease the influence of the delay of other trains

significantly. This hypothesis seems to be supported by the

fact that, when the train has left the North-South connection

in Brussels-South, the influence of other train delays becomes

an improving factor again.

While this could explain the worse results for Brussels-North

and Brussels-Central, it does not explain the worse results

in Braine-l’Alleud, which is the only station with a normal

regime where taking other informative trains into account

worsens the prediction of our main train’s delay. It is unclear

why that is the case here.

Since Antwerp-Central is the first station of the itenerary, there

is no previous delay available. This is visible in the diagram,

as it is the only line that’s cut off at the third step.

Training and evaluating the model also shows that the reduced

computational complexity of a GBN is hugely important for

keeping the training times acceptable. On a single CPU core,

it takes on average 40 seconds per station to do so, and the

model itself is a lot more interpretable than neural networks

or other complex machine learning models.

VI. CONCLUSIONS AND FUTURE WORK

By including the delays of secondary trains in the same sta-

tion using a Bayesian network, we were able to create a delay

prediction model that outperforms similar models that do not

include this contextual information. We presented a bottom-

up approach where we selected only those trains that were

actually informative, which also allowed us to discover which

trains did not add useful information, effectively offering an

easy way to detect and remove noise from our prediction

model.

Of course, there are still many open questions and possibilities

that ought to be explored in order to find the optimal properties

for predicting train delays, some of which we will briefly

discuss here.

A. Selection of informative train lines

Currently, the set of informative trains is obtained through

a bottom-up approach, as described in section V. While this

approach already delivers improved results compared to the

baseline, it is theoretically possible that a better set exists.

Perhaps there are some train lines that only provide useful

information in another influencing scheme. However, time

constraints did not allow for this approach, finding the op-

timal graph is an NP-hard problem. While some influences

can definitely be ruled out beforehand, there are still many

influence sets that have not been considered.

Trying to find an explanation for the worse results in Braine

l’Alleud also seems interesting to do, especially if the model

is applied to other train lines and certain stations also seem to

suffer from a decrease in prediction power.

Of course, one could also look to include information other

than the delays of trains. Special events like strikes, weather

forecasts, holidays, . . . Incorporating these variables could also

show an improvement in delay prediction.

B. Evaluation metrics of the model

While the main properties of the MSE are well known

and discussed earlier, there’s also one lesser known property:

The mean squared error is a frequentist loss function. In

the frequentist view, probabilities quantify the frequencies of
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Fig. 4. Mean squared error per station and per step obtained from the trained
model. The first three steps (resp. no info, all trains, informative trains) show
that there’s already a decent amount of predictive information to be obtained
from simply looking at other trains alone. Step 4 (Previous delay) is the
baseline model score, and the model proposed in this paper is given by step 5
(Informative trains + previous delay). Brussels-North and Brussels-Central are
dashed lines because there are grounds to assume that the results in step 5 are
heavily influenced by the special regime used in the tunnel connecting these
stations. Note that Antwerp-Central does not include step 4 and 5, because
for these steps, the previous delay is required, but that’s not available in the
starting station.

certain events. This contrasts with the Bayesian view, in which

probabilities quantify the uncertainty of certain events. The

MSE will penalise any deviation from the correct value. But

this seems a bit exaggerated with regards to the goal of the

model: Providing a reliable prediction of a train’s delay. For

example, if the prediction is off by 30 seconds, that does not

pose a major problem by any means. Nor does a deviations

of 2 seconds, but the former will result in a much larger loss

score nonetheless.

More interesting would be to work with timespans to which

the model assigns a very high, predetermined certainty. This

would also provide a given user of the model with a tool

to determine how certain a prediction would need to be in

order to act upon it. It also makes sense to score deviations

asymmetrically; if a passenger arrives 1 minute too early in

the train station, it is not that big of a deal, but arriving 1

minute too late means that passenger could be spending an

hour longer in transit. The currently used metric does not take

this into account.
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