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Fig. 1: We present the study of end-to-end prompt-vision-physics neural network (PVPNN) to discover novel physics-conform designs using a
joint optimization strategy. Based on the user’s visual and physics preferences (Fig. 1(a)), the design generated using a conventional computer
vision technique has an unnatural shape (Fig. 1(b)). We observed uneven stress distribution and high concentration (deep red regions) at the
table leg and joint when validated with finite element method simulation. In contrast, our proposed method learns the target object’s physics
and can discover a viable design (Fig. 1(c)) that has a realistic appearance and yet adheres to visual and physics preferences.

Abstract—In this paper, we present the study of an end-to-
end prompt-vision-physics neural network (PVPNN) to speed up
the design discovery process in science and engineering. PVPNN
has the potential to transform design discovery by enabling re-
searchers and engineers to specify design requirements seamlessly
via prompts, analyze available large-scale relevant historical data
sets to generate novel physics-conform designs and predict the
efficacy of potential design candidates rapidly. Starting from
a given image or prompt for an ideal design as the baseline,
our proposed framework first generates potential designs from a
vision foundation model. Based on the practicality requirements
provided by the user through text prompt, the PVPNN initializes
a resource-efficient physics-informed neural network and jointly
optimizes both geometry and physics models in an end-to-end
mode. An experimental study on a simple engineering structure
validates that our proposed framework can seamlessly satisfy
visual preferences and practicality for fast design discovery.

Index Terms—AI for design discovery, prompt-vision-physics
neural network, PVPNN, design discovery, computer vision,
engineering design

I. INTRODUCTION

Recent advances in using artificial intelligence (AI) to

speed up scientific discovery have garnered significant interest

*Equal Contribution

to drive further progress across diverse domains [1]–[3]. A

substantial body of research in the field of engineering has

been dedicated to discovering novel structures or geometries

that fulfill specific design criteria [4]. Both the demands of

researchers and engineers and the wealth of accumulated data

over the past decades are propelling and substantiating the

exploration of AI for design discovery.

In traditional engineering practices, the design discovery

process typically entails a prolonged cycle and collaboration

among people from diverse fields. Initially, designers draw

upon past design experiences to create a design draft. Subse-

quently, engineers translate these drafts into 3D models and

subject them to time-consuming computer simulations [5] to

analyze the physical characteristics of the design. In response

to simulation results, engineers iteratively refine the design

through multiple rounds of adjustments and simulations [6],

thus to better align with practical design requirements. This

thorough design cycle demands a significant investment of

time, ranging from days to months, and substantial resources,

encompassing both human and material assets. Recently, with

the wealth of historical design data and the rapid evolution

of computer vision, generative AI models can now produce

1427

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00255



I want a table that can bear 10 kg.
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Fig. 2: Our proposed prompt-vision-physics neural network comprises a vision foundation model that synthesizes the initial design and a
physics model that defines the precise physics of the design. We use a joint-optimization strategy, conditioned with the user’s visual and
physics preferences provided as images or prompts via LLMs, to co-train the geometry of the design and the physics-conform network,
modifying the design towards a more physics-conform variant.

artistic designs with simple prompts [7]–[11]. Additionally,

the evolution of physics-informed machine learning showcases

its potential for enhanced physical simulation [12]. Together,

these advancements lay the groundwork for an end-to-end

design discovery framework, enabling the completion of com-

plex design cycles with minimal prompts. Such a framework

will provide ease of design specification and is anticipated to

significantly reduce the traditional design cycle to hours or

even minutes, requiring only minimal resources.

To realize the overarching vision described above, we have

embarked on a preliminary endeavor towards an end-to-end

design discovery framework, introducing a novel architecture

known as the prompt-vision-physics neural network (PVPNN).

Starting from a given image or prompt, PVPNN first synthe-

sizes an initial neural geometry model using vision methods.

Then, according to practicality requirements, our proposed

method initializes a physics-conform network to estimate

the physical information (e.g., stress fields) [12]. On this

basis, we propose jointly optimizing the neural geometry and

physics models end-to-end, considering visual preferences and

practical design requirements. We leverage the differentiability

capability of the physics-conform network to our framework,

circumventing the need for employing black-box optimizers

or the intricate design of a differentiable physical simulation

process. PVPNN has the following strengths: (1) Flexibility.

Our proposed technique can flexibly discover designs without

relying on extensive expertise; (2) Visual preferences. PVPNN

can synthesize realistic designs by inheriting the advantages

of vision methods; (3) Physics Conformance. PVPNN can

discover designs that align with physical principles and satisfy

the physics preferences with a certain degree of flexibility

through optimization, supporting real-world usage needs.

In summary, we proposed two contributions in this paper:

(1) an end-to-end framework for design discovery, which

can flexibly discover physics-conform designs from given

images or prompts, and (2) a joint optimization framework of

geometry and physics models integrates geometry and physics

models in a fully differentiable way.

II. END-TO-END PROMPT-VISION-PHYSICS NEURAL

NETWORK

We envision a potential synergy with the power of large

language models, computer vision, and engineering design

techniques to discover novel designs that simultaneously ad-

here to visual and physics preferences. To this end, we

conceptualize the idea that we define as follows:

Definition 1 (Prompt-Vision-Physics Neural Network

(PVPNN)). Prompt-vision-physics neural network combines
visual information and physical concepts to discover novel
designs that best satisfy the visual and physics preferences
implied by the prompt.

A. Overall Framework

Fig. 2 presents the overview of our proposed end-to-end

framework. Given single/multi-view image(s) or a prompt for

an ideal design, we aim to discover novel designs that satisfy

visual preferences and practicality simultaneously. This can be

decomposed into the following three objectives:

• Geometry conforms to visual preference.

• Ensuring the physics model can provide accurate predic-

tions for the physics involved.

• Geometry aligns with specific design specifications of

engineering implications.

To achieve the above goal, our proposed framework in Fig. 2

includes the following modules:

• Large Language Model (LLM) for text prompt: LLM

represent users’ specifications that are compatible with

our framework, facilitating the subsequent vision and

physics processing.

• Vision Foundation Model (VFM) for 3D design dis-

covery: VFM synthesizes a 3D model that satisfies the

images or text prompt to provide a rough design pro-

totype (Ginit). This prototype is used to initialize the

3D geometry model (FG) and the differentiable physics

model (FP ).

• Physics Model: Using the physics specification and the

rough design prototype (Ginit), the physics model com-

putes the necessary physics information for initializing

the differentiable physics model (FP ).

Once FG and FP are initialized, our proposed technique

jointly optimizes the geometry and physics fields in a fully

differentiable way and outputs the final novel design.

The representations of geometry and physics should be

continuous and differentiable to allow end-to-end joint opti-

mization. Therefore, two multi-layer perceptrons (MLPs) are
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employed to approximate the signed distance function (SDF)

of the geometry and the physical fields, respectively.

B. Joint Optimization of Geometry and Physics

After the geometry and physics initialization, we can obtain

the realistic initial geometry field. However, in the physics

initialization, the computed force distribution of the initial

geometry is usually not optimal according to the physics

requirements. To satisfy the design visual preferences and

practicality at the same time, we relax the geometry constraint

and strictly impose the physics constraint to optimize the

geometry and physics fields jointly. Specifically, to relax the

geometry constraint, based on the initial geometry field Ginit,
we generate an additional subspace SG, which is located at a

distance from the initial geometry surface. This subspace pre-

vents the geometry field from deforming too much. Therefore,

we define a relaxed geometry constraint as:

LG =
1

|SG|
∑

p∈SG

||FG(p)−Ginit(p)||2. (1)

This constrains the shape deformation to a specific subspace,

guaranteeing the visual preference requirements. In terms of

the physics constraint, we should make sure that the solution

provided by the physics-conform network is correct. Thus the

following loss should be minimized:

LP = ||N [FP (p)]||2p∈Ω + ||B[FP (p)]||2p∈∂Ω, (2)

where FP (p) is the approximation of the physics-conform

network, and N [·] and B[·] are the operators used to form

the following governing functions:

N [f(p)] = 0, p ∈ Ω,

B[f(p)] = 0, p ∈ ∂Ω.
(3)

Note that Eq. (3) records a set of governing functions (e.g.,

linear elastic solid mechanics), Ω contains all of the points

inside the geometry, ∂Ω includes all of the points on the

boundary of the geometry, and f(p) is the solution of the

governing functions. Moreover, to ensure that the geometry

satisfies the required engineering design objective(s), the fol-

lowing objective function should be optimized (a minimization

problem is considered here), i.e.,

LD = D[FP (p)], (4)

where D[·] is an operator corresponding to the engineering

requirement.

In minimizing the maximum stress of a geometry under

a specific force (to withstand loads better), D[·] denotes the

maximum stress operator. Other objectives, such as the average

stress in the geometry, can also be considered.

Without loss of generality, our joint optimization loss can

be defined as:

L = λG · LG + λP · LP + λD · LD, (5)

where λG, λP and λD are weights to balance different terms.

III. EXPERIMENTS

We assume the geometry of the design follows the linear

elastic material and conducted a two-phase training process

using Nvidia V100 GPU (32GB). In the first phase, we obtain

the boundary conditions from an initial design, discovered

using a vision foundation model [8]. We then pre-train the

geometry and physics-conform neural network, using Eq. (1)

and Eq. (2), respectively, to extract the 3D representation and

initialize the physics model. In the final phase, the design

is optimized by simultaneously training both the geometry

network and the physics-conform neural network, where the

loss function in Eq. (5) is used.

To evaluate our proposed method, we provide PVPNN an

image and a prompt “A table withstanding 10kg top load,” to

discover viable designs for a table, as illustrated in Fig. 1(a).

Fig. 1(b) showcases the 3D design discovered by the vision

foundation model. We validated the design using FEM simu-

lation to observe its stress distribution, as shown in the color

shades plots in Fig. 1. Note that light-color shaded regions

indicate areas with high-stress concentrations on the geometry.

Hence, these hotspots are more susceptible to integrity failure.

Notice that while the discovered design appears viable, its

corresponding stress distribution indicates that this design is

infeasible. Specifically, the tabletop and joint are more fragile

than other table parts, making it less durable. On the other

hand, after optimizing with our proposed framework, as shown

in Fig. 1(c), the thickness of the table joints and leg has

increased, resulting in a much lower stress distribution. This

demonstrates that PVPNN can discover viable designs that

conform to visual and physics preferences.

(a) Initial (b) After 250 steps (c) After 5K steps

(d) Without LD (e) Without LP (f) Without LG

Fig. 3: PVPNN is efficient in optimizing the design as shown in Fig.
3 (a)-(c). Futhermore, the effect of excluding design LD , physics LP ,
and geometry LG components in our training objective (see Eq. (5))
has a profound effect on the design Fig. 3 (d)-(f).

Our investigation of the geometric evolution during opti-

mization has shown in Fig. 3(a)-(c) that our proposed frame-

work is efficient in strengthening the weak spots of the design

and still conforms to the visual preference of a table.

We also assess the efficacy of the three proposed losses by

selectively excluding each loss term, namely LG, LP , and

LD. In Fig. 3(d), the absence of LD resulted in a slight

thinning of the table leg compared to the PVPNN with all of

the losses. This deviation may compromise the load-bearing

capacity of the table. The rationale behind this outcome lies
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(a) Malformed base (b) Malformed top

Fig. 4: A vision foundation model [9] with the prompt “A table with
a teardrop shape” discovered a malformed design with tabletop holes
and a fragile table base, and using this model alone is not enough to
discover a feasible design.

in the absence of an objective, as LD serves to guide the

geometry toward satisfying the design requirements. Conse-

quently, the geometry fails to optimize effectively in alignment

with the design specifications. Similarly, Fig. 3(e) highlighted

the consequences of omitting LP , wherein the absence of

physics-related information hinders the optimization process.

This lack of guidance can cause the geometry to deviate

towards configurations that do not align with the intended

design requirements, resulting in an unconventional geometry.

Moreover, as demonstrated in Fig. 3(f), the exclusion of LG
markedly influences the geometry, restricting its ability to

adhere to visual preferences. This deviation results in an

unnatural shape, emphasizing the role of LG in driving the

geometry towards user-preferred designs.

Furthermore, we employed our proposed method to discover

a novel teardrop-shaped table design. The design from a vision

foundation model [9] as presented in Fig. 4 is infeasible. After

initializing the design using our proposed technique, the initial

design filled the small holes as shown in Fig. 5(a). However,

moderate stress distribution is observed throughout the entire

design in the physics field, and depending on the material,

the narrow strip of the table base may suffer breakage. After

optimization, while the peak stress is higher than the initial

design, we have seen a significant reduction of stress at the

highlighted potential breakage area (Fig. 5(b)). This result

reiterates PVPNN’s conformity to physics preferences to a

certain degree. Nevertheless, this optimized design has a

smoother surface with some uneven regions leveled and better

fits the visual and physics preferences.

IV. CONCLUSION AND FUTURE DIRECTION

We propose PVPNN for fast design discovery that opti-

mizes geometry and physics models, seamlessly integrating

the representation of computer vision and engineering de-

sign. PVPNN efficiently produces realistic and durable novel

designs, catering to diverse user preferences and practical

considerations. However, in our current framework, there is a

notable absence of the incorporation of historical physical data

in the training process. The data-driven differentiable physics

model may be a promising technique to alleviate the limitation.

This avenue represents a focal point for our future research

efforts. We envision the limitless potential of our proposed

framework, extending beyond the design discovery to scientific

discovery [2], [3].

(a) Before Optimization (b) Optimized Design

Fig. 5: Before optimization, the initial design suffers moderate stress.
Depending on its material, it has the potential to disintegrate at
its base. After optimization, this area has a stress reduction and a
much smoother appearance, rendering the design a better fit to user
preferences. Note that the color bars are not to scale.
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