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Abstract—A de-centralized, peer-to-peer Al metadata
framework is demonstrated which can enable end-to-end
metadata & lineage tracking for distributed Machine
Learning pipelines spanning edge, High Performance
Computing, and cloud environments. With a specific
example of end-to-end microscopy algorithm and datasets,
the proposed method shows how to enable reproducibility,
audit trail, provenance of metadata artifacts. The emerging
needs of automation in experimental sciences, ML-centric
workflows, and FAIR metadata management across
federated compute environments is addressed.
Keywords—HPC, FAIR, AI, ML, DKL

I. INTRODUCTION

Modern Al enabled experimental science research
involves intricate workflows that span various experimental
and computational facilities. In microscopy, Researchers no
longer operate within the confines of a single microscope;
instead, they collaborate within extensive instrumentation
networks across user facilities. The challenge lies not in the
isolated creation or deployment of these workflows but in the
seamless integration and optimization. This challenge is
underscored by the requirements outlined in RFPs [1], where
some vendors are called upon to provide software tools that
adhere to FAIR principles (Findable, Accessible,
Interoperable, and Reusable) for the management and
preservation of scientific data [2,3].

While the data acquisition may be done in ~milliseconds,
data transfer is performed ad-hoc in minutes and the
scientist/researcher spends weeks-months in iterating over
experimental parameters at the instrument and in the
algorithm used in their Al surrogate or physical model. In this
paper describes how end-to-end metadata & lineage tracking
is performed for distributed Machine Learning pipelines
spanning instrumentation edge, High Performance Computing
& cloud environments using a framework such as Federated
CMF [4]. This paper addresses the challenges in real-world
scanning-transmission  electron microscopy data and
workflow involving Deep Kernel learning algorithm [5-8].
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II. AUTONOMOUS MICROSCOPY WORKFLOW WITH COMMON
METADATA FRAMEWORK

In [8], the study presents the Deep Kernel Learning (DKL)
algorithm, which combines Gaussian process-based Bayesian
optimization with a feedforward neural network. Its primary
goal is to uncover material structure-property relationships
using microscope data. The DKL model efficiently trains on a
limited dataset from material samples, enabling it to predict
values and uncertainties for unexplored points. This aids in
selecting high-uncertainty points by active learning, for
further examination, traditionally done by experienced
microscopy experts. This approach saves time and avoids
sample deterioration. Previous research confirms that even
sparse random sampling, as low as ~1% of points, suffices for
accurate predictions by DKL. This closed loop workflow (in
Fig. 1) involves experiment, pre-processing, selection,
training, inference, and steering stages. While requiring a
GPU, this loop is computationally appropriate to execute on
accelerator-equipped edge compute systems.
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Figure 1: Federated CMF applied to an Active Learning Workflow

However, during development the experimentation for
feasibility and correctness is typically done in a HPC system
(with a cluster of compute nodes. The roadmap for future
evolution of this workflow involves the coupling of a
deterministic molecular dynamics simulation (run in an HPC
system) to make real-time predictions of materials properties
[S] which is an additional input to the experimentational
steering algorithm (not discussed further in this submission).

Federated CMF involves a python client-side library to
integrate with the workflow. Any participating compute
system can stand-up a CMF server to enable syncing of
metadata from multiple CMF clients. CMF indexes a unique



identifier (UUID) of a metadata artifact to the version of code
it is produced from (GitHub commit-id reference).This
enables the reconstruction of lineage and version history of
any artifact produced from a pipeline. Since pipeline names
are unique, it is possible to merge lineage and version histories
on any CMF Server instance from subscribing clients (with
cmf push/pull semantics). This also enables merging of
execution and artifact history between server instances. The
paper incorporated the CMF client-side into the DKL
workflow which enabled capturing the instrumentation
parameters, subset of data used during data selection, model
artifacts produced and hyperparameters used during training,
and uncertainty/prediction captured during the inference.

III. LINEAGE TRACKING IN DKL EXPERIMENT STAGES

Federated CMF is instrumented with the DKL - Spectral
Reconstruction and Active Learning method. This method
includes three experiments: Full Dataset Training, Partially
Sampled Data Training (1%, 5%, and 10% of the full dataset),
and Active Learning. Each experiment has Data
Preprocessing, Training, and Inference stages. Unlike
standard model training, Active Learning is an iterative
process, and its metadata includes data selection, labeling,
training metrics, inference model snapshots at each stage, and
the chosen data for the next exploration step. Tracking this
metadata enables data-driven decisions, effective progress
monitoring, and reusability. Fig. 2 depicts the metadata
lineage tracking for the DKL workflow in these experiments.
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Figure 3: Task Augmentation [9]

A. Full Dataset Training

It begins with the input dataset, which includes plasmonic
microscope images and their known spectra. The data pre-
processing stage converts the input dataset into patches and
their associated spectra. The data is then split into training and
testing sets. Training is performed on the train set, generating
a train loss and a trained model. The model is reused in the
inference stage with the test dataset, producing model
predictions and a test loss. The CMF tracks input to output at
each stage as in the highlighted Full training experiment. The
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augmented Dataset is used to perform the training for
robustness as there are only minimal samples available, as
given in Figure 3.

B. 10% Data Training

The processed input undergo sampling of random 10%
selection to validate the model performance with minimal
data. After sampling, the training and inference step is similar
to the full dataset training.

C. Active Learning

1% of input patches are randomly selected for initial
training. The model then iteratively selects (Data Selection)
and labels data to improve performance, which feeds into the
Model Re-training stage. During multiple exploration steps,
the model is trained, and at each step, a trained model is
produced. CMF systematically captures metadata, enabling
HPC to edge systems accessibility. This tracking of model
stages supports continuous training from different edge. The
model is also reusable for direct inference or fine-tuning. The
system's interoperability allows input data from various
experiment sites, with HPC handling model training, and
active learning executed at microscopic locations, offering an
efficient real-time solution.

IV. NEXT STEPS

This work is further extended to demonstrate the real-time
use of the artefacts and metadata tracked with CMF on
simulated data and use it to guide the simulation model
without having to retrain from scratch.
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