
Towards Fault-tolerant Quadruped Locomotion with
Reinforcement Learning

Dikai Liu1, Jianxiong Yin1 and Simon See1,2

Abstract—Modern quadrupedal robots are skilled in navigat-
ing through challenging terrains in remote uncontrolled envi-
ronments with recent advances in reinforcement learning (RL).
However, survival in the wild requires not only maneuverability,
but also the ability to handle potential critical hardware failures.
How to grant such ability to quadrupeds with RL is rarely
investigated. In this paper, we propose a novel methodology
to enable fault tolerance for RL-based quadruped locomotion
controller with joint teacher-student framework for fast zero-
shot knowledge transfer that can be deployed to a physical robot
without any fine-tuning. With no dedicated reward design for
gait guidance, the designed simulation and training strategy can
be easily added on top of existing RL-based controllers and
generalized to unseen situations. Extensive experiments show
that our fault-tolerant controller can efficiently lead a quadruped
stably when it faces joint failures during locomotion.

I. INTRODUCTION

Quadrupedal robots have demonstrated enhanced intelli-

gence in solving a wide range of tasks with high flexibility

and versatility in complex environment. They are commonly

deployed in remote uncontrolled environments [1], where

potential accidents could cause critical hardware failures, e.g.,

joint locking, free swinging, broken brackets. These failures

could cause significant harm to both robots and humans,

increase downtime, and shorten the service life of the robot.

Therefore, it is crucial for the controller to exhibit robustness

against hardware failures.

Recent advances in reinforcement learning (RL) have led

to solutions in various quadruped locomotion tasks, such as

traveling through rough terrains [1]–[3], jumping & falling

recovery [4] and running at high speeds [5]. However, these

studies typically presume normal operating conditions. With
limited hardware failure detection (e.g., motor overheating,

sensor signal loss) or protection functions (e.g., shutting down

the system) on existing quadrupedal systems, the development

of fault-tolerant controllers remains an open problem, even

with well-studied conventional approaches [6]–[9].

RL can significantly relax the requirement of extensive

prior domain knowledge through exploration and exploitation.

Robotic agents are usually first trained in simulation and then

transferred to the physical world [2], [3], [5]. The existence of

the sim-to-real gap remains a major barrier to achieve zero-

shot transfer [10]–[12]. This gap is especially crucial in the

event of hardware failure, as many existing work is far from

the reality for failure simulation [13]. Recent work proposed
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Fig. 1. Physical robot and its simulated counterpart. Unitree A1 is equipped
with our joint locking mechanism. Its official URDF model is used in the
Isaac Gym simulator [16] with body links of the locked joint showing in red.

several RL-based controllers to achieve fault tolerance [14],

[15], which are only trained and tested in the simulation with

fixed predefined failure. Due to the huge sim-to-real gap, it is

unclear how these methods will perform in the physical world

and it is challenging to scale to different failure situations [14].

Some other work used specially designed reward functions

to drive the policy to a dedicated gait control under failure

[13], which cannot be easily implemented in every RL-based

controller and generalized to other failures.

Motivated by these limitations, we design a novel frame-

work to achieve robust fault-tolerance quadruped locomotion

in the physical world with the following contributions. (1) We

design a simple yet efficient way to enable fault tolerance

against joint locking, which can be a direct add on top of an

existing RL-based controller without pre-designed gait control

and additional dedicate reward design as guidance. (2) We

introduced joint optimization in the teacher-student reinforce-

ment learning paradigm to achieve fast zero-shot transfer in

a single phase. When deployed in a physical quadruped, the

policy can provide real-time locomotion control against pos-

sible hardware failures. Extensive experiments are conducted

in both simulation and a physical Unitree AI robot (Fig. 1).

Evaluations show that our method can significantly improve

the robustness and hardware fault tolerance.

II. METHODOLOGY

Our proposed framework can be added on top of an existing

RL-based controller to train a control policy π to guide the

stable locomotion of the quadruped even when it faces critical

joint locking failures. We choose RMA [3] as the baseline, a

well-recognized base framework used in [5], [17], [18]. Fig. 2

presents an overview of our methodology.

A. Joint Failure Modeling in Simulation

We mainly focus on the single joint locking failure, which

is also the target of recent related works [9], [14], [15]. A

locked joint has limited range of motion, but can still apply

torque to support the body.

An RMA-like [3] vanilla environment BaseEnv is first

created, where no failure occurs. Then, for each virtual agent,
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Fig. 2. Methodology overview. The teacher-student framework from [3],
[5] are adopted to train the policy. During training, synthetic data are used
to compute the latent representation zt and ẑt, which are fused for joint
optimization. The student and policy are then directly deployed with zero-
shot transfer on the physical robot.

we randomly sample the failure time Tf ∼ U(T fmin, T
f
max),

the failure joint Jf ∼ U{1, . . . , 12} and the failure tolerance
θtol ∼ N (0, θmax

2). The failure status is tracked by a failure
flag ft ∈ [0, 12]. Initially and after every reset, ft is cleared
as 0 to indicate a normal state. In the episode, when the agent

progresses to Tf , the failure occurs and ft is updated to reflect
the joint failure ft = Jf . The current position of the selected
joint Jt is used as the central failure angle θ̄ = qJt . Joint
locking failure is modeled by restricting joint movement with

a limited range θallowed, controlled by the central position
θ̄ and symmetric tolerance θtol, which are used to directly
overwrite the joint’s limit with Isaac Gym’s API.

We refer to the failure environment as FailureEnv.
Unlike previous methods [14], [15], where joint failures are

predefined and fixed, we use domain randomization to generate

versatile and unpredictable situations. Since joint locking

directly affects joint control, the robot status and surroundings

at the failure moment can greatly alter the result, online

randomization can help to train a robust and generalized policy

against various joint locking accidents.

B. Reinforcement Learning Architecture

We closely follow RMA [3] for observation, action, and

reward design to take data from the onboard sensor and output

the optimal joint position.

Observation. Data from the onboard sensors are collected to

provide observations. At any time t, joint encoders, IMU and

foot encoders provide noisy sensor data xt ∈ R
30, which

consists of joint position q ∈ R
12, joint velocity q̇ ∈ R

12,

gravity vector g ∈ R
2 and binary foot contact c ∈ R

4. The

previous actions at−1 ∈ R
12 are further added to form the

observation ot = [xt, at−1] ∈ R
42. Historical observations

of length H = 50 are used to capture temporal information.
The privilege information contains the domain randomized

parameter (payload COM, mass, motor strength, friction)

d ∈ R
16, the state of the robot (linear and angular velocity)

s ∈ R
6, the surrounding height map m ∈ R

140 and the failure

flag f ∈ R
1 introduced in II-A.

Action. The policy outputs the target joint position q̂ = at ∈
R

12, which is then processed by a PD controller for the desired

torque τ = Kp(q̂− q)+Kd(ˆ̇q− q̇), where Kp and Kd are the
stiffness and damping gain and target velocity ˆ̇q is set to 0.
Reward Function. The reward functions encourage the agent
to move forward stably and smoothly with a target speed of 0.5

m/s. Penalization is given mainly for movement in other axes,

such as lateral movement and yawing, large joint acceleration,

power consumption, and collision with the robot body. In

addition, no special reward for failure handling is designed.

C. Joint Teacher-Student Framework
Utilizing the privileged information of the robot and envi-

ronment can produce better performance faster [19], [20]. The

teacher-student learning paradigm [2], [3], [5] enables implicit

identification of the hidden dynamics of the environment and

robot from perceivable data for direct deployment.
To optimize the student adaptor φ, previous work [2], [3],

[5] focuses on imitating the behaviors of the teacher model μ
using DAgger-inspired supervised learning [21] to minimize

the difference in latent representation Ladaption = ‖zt− ẑt‖2.
However, even a slight difference in the latent space can

cause unpredictable behavior and performance degradation,

especially under joint failure. We propose to jointly optimize

all modules by fusing the latent representations:

at = π[αẑt + (1 − α)zt, ot]

We further append the PPO [22] loss LRL with Ladaption,
which is similar to [23], [24]:

L = LRL + βLadaption
In the early stage, we set α = 0 to train π solely with

privilege information and minimize the adaption loss simul-

taneously. When reasonable control commands can be given

with zt, α gradually increases with the progression of training,
and β is negatively correlated, until only ẑt is used for policy
making. In this way, even if we cannot obtain a perfect replica

of zt, the focus of optimization shifts to the reward benefits,
and π can still be optimized.

III. EVALUATION

A. Implementation and Experimental Setup
Module Implementation. Both the teacher model μ and

control policy φ are implemented in MLP with hidden layers
of [512, 256, 128] and [256, 128], respectively, with ELU acti-

vation. μ outputs the latent representation with length D = 8.
Two different student models are implemented to capture

temporal information, one with vanilla 1D CNNs following

[3] and another with TCN [25] following [2].
Simulation. Isaac Gym and its open source library IsaacGy-

mEnvs [16] are used to simulate massive parallel environments

with rough terrains, including rough sloped terrain, smooth

sloped terrain and discrete obstacles [26]. The simulation

runs on two NVIDIA A6000 GPUs, each handling 4096

environments at 200Hz, which can provide more than 0.1M

FPS for simulation. The controller runs at 50Hz for command.
Hardware. Unitree A1 is used as the test platform with an

external NVIDIA Jetson Xavier NX for GPU acceleration to

process the exported JIT model for position control.
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TABLE I
NORMALIZED REWARD RETURN FOR DIFFERENT STUDENT POLICY.

Environment
[T] [JT] [SS]

600M 300M
600M 300M+300M 600M+600M

CNN TCN CNN TCN CNN TCN

BaseEnv 1 0.92 0.89 0.92 0.15 0.77 0.85 0.93
FailureEnv 1 0.85 0.97 0.85 0.20 0.73 0.81 0.84

B. Teacher-Student Transfer

To better demonstrate the efficiency of our proposed joint

training, the student network is trained with: the proposed joint

training ([JT]) and separate supervised ([SS]) used in RMA.
• [T]: Teacher is trained in two configurations as oracle:

600M; and 300M with half of the simulated frame for use

in limited frame supervised transfer.

• [JT]: this is trained with standard 600M frames.

• [SS]: this is fully trained with 600M+600M frames to

achieve optimal performance. To compare the performance

under the same total frame as [JT], an additional configu-
ration of 300M+300M is used with teacher and supervised

training stages equally divided.

The trained policies are then deployed in the simulation

and the average return is shown in Table I. The results are

normalized based on the corresponding teacher performance.

Despite supervised transfer showing great performance

while fully trained, especially with TCN, it struggles when

the total simulation step is limited. For joint training, it can

achieve the same level or even outperform [SS] transfer with
only half of the simulation step required in both environment,

indicating a superior efficiency in knowledge transfer.

C. Virtual Deployment

Overall Performance. Both student policies are deployed into
the same test environment where robots are spawned across

different terrains and levels evenly with joint locking failure

occurs randomly. Each virtual robot can run a maximum of

20 seconds after joint failure occurs. The forward velocity

both before and after joint locking are tracked and the survival

time of each agent is measured on average, 25% percentile

(P25) and 50% percentile (P50) so that we can see how each

agent handles joint locking in the worst scenarios. The result

averaged over 1500 instances per terrain is shown in Table II.

Before joint failure, both agents can drive the robot for-

ward close to the target velocity of 0.5 m/s. After failure

occurs, the velocity drops in both agents, but the fault-tolerant

FailureEnv agent maintain the velocity slightly better. De-
spite BaseEnv agent is more vulnerable to joint locking and
fails within 5s for half of the instances. In contrast, the fault-

tolerant FailureEnv agent can survival much longer with a
locked joint. In smooth slope and rough slope terrains, most

of the robot can even survive to the end of the journey. Due

to the small physical size of the A1 robot, discrete obstacle

terrain is challenging even under normal conditions [17], [18],

making joint failure more deadly in this environment.

Gait Pattern Analysis. To understand how FailureEnv
agent handles joint failure, the gait pattern of foot contact

TABLE II
AGENT PERFORMANCE WITH JOINT FAILURE IN SIMULATION.

Agent Terrain
Avg. Forward
Velocity (m/s)

Survival Time (%)

Before After Average P25 P50

BaseEnv

Smooth Slope 0.56 0.45 51.4 6.7 36.5
Rough Slope 0.55 0.41 44.4 4.7 20.7
Discrete 0.54 0.41 40.8 4.4 17.5
All 0.55 0.42 44.7 5.0 21.4

FailureEnv

Smooth Slope 0.59 0.52 69.3 20.1 100.0
Rough Slope 0.57 0.47 59.1 11.7 81.0
Discrete 0.55 0.44 45.8 6.6 31.0
All 0.57 0.47 56.5 10.8 59.0

Fig. 3. Gait pattern of two instances during virtual deployment. The difference
gait pattern shows that the controller can dynamically adjust to joint failure.

is captured during deployment around the failure moment,

with F/R denoting front/rear and L/R denoting left/right. Two

instances are shown in Fig. 3. With an unexpected joint

locking failure, the agent can quickly adapt based on the actual

situation and react accordingly. While the top instance can

keep the previous gait, the bottom instance adjust the motion

to drag the failure leg forward. The dynamic adjustment

for different situations demonstrates the generalization ability

of FailureEnv agent in the handling of failures without

relaying on some predefined pattern.

Multiple Joint Failure. We further evaluated the ability of
FailureEnv agent to handle multiple joint locking failures,
which is never seen during training.

Although the FailureEnv agent can easily handle two

joint locks simultaneously, it becomes more difficult to main-

tain the heading. With more joints locked, the agent begins

to struggle, especially when the joints are distributed across

multiple legs. When all failures occur on the same leg, even

with all three joints locked, resulting in the loss of a whole

leg, the agent can compensate for the loss with other legs.

D. Physical Validation

To perform physical validation, we design two strategy:

softlock and hardlock. With softlock, we limit the output joint
position to the failure range, so that failure can happen at

any time and in any joint. However, some controllers cannot

be easily manipulated (built-in controller), and we design a

3D-printed adjustable locking mechanism to hardlock the calf
joint. Fig. 4 shows the snapshots of the trials.

We measure the survival time in the real world with a

maximum lifetime of 20 seconds in Table III. The fault-

tolerant FailureEnv agent can handle all the test seniors

while the vanilla BaseEnv agent struggles on thigh and
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(a) Running with joint locking by the FailureEnv agent

(b) Running with joint locking by the BaseEnv agent

(c) Running with joint locking by built-in controller

Fig. 4. Deployment snapshots on the physical robot run by (a) fault-tolerant
FailureEnv agent with one (top) and two (bottom) joint locked, (b) baseline
BaseEnv agent and (c) A1’s built-in controller.

TABLE III
AVERAGE SURVIVAL TIME IN PHYSICAL TESTS UNDER DIFFERENT JOINT

LOCKING

Agent
Softlock

Hardlock
Hip Thigh Calf

FailureEnv 100% 100% 100% 100%
BaseEnv 100% 20% 5% 35%
Built-in - - - 0%

calf joint and the robot stalls or falls directly to the ground.

We further lock two joints for FailureEnv policy and the
quadruped can still move safely, even though this situation is

never seen during training.

IV. CONCLUSION AND FUTURE WORK

In this study, we propose a novel approach for fault-tolerant

RL-based quadruped locomotion. We design a joint locking

failure simulation strategy with a joint training pipeline for

efficient teacher-student transfer with an existing RL controller

without additional reward and gait design. We demonstrate that

our controller can be zero-shot transferred to physical robot

and is robust under various joint locking failures.

Quadrupedal robot fault tolerance is a complex topic con-

sidering the variety robot model, use cases, and failure type.

The current work can be extended with user input and high-

level sensors for advanced tasks. To further improve the

robustness of the locomotion controller, a unified solution can

be developed for different joint failures (joint locking and

free swinging). A generalized and transferable solution can

be explored for different quadrupedal robotic platforms.
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