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Abstract—Underwater depth estimation is crucial in the appli-
cations of marine robotics. It can provide environment informa-
tion for target tracking, robot navigation, and 3D reconstruction
of underwater terrain. Existing works transform underwater
images into in-air conditions to adapt methods that are designed
for natural images. However, this may result in expensive
computational resources. To overcome this limitation, we propose
a lightweight knowledge distillation framework for underwater
depth estimation. We utilize a powerful model designed for
underwater images as the teacher model and a lightweight CNN
model as the student model. We distill global features to enable
the student to acquire both local and global information, thereby
improving estimation performance. Our framework includes a
global transformation module for efficient global feature distil-
lation and a global-local fusion module to combine local and
global information for final estimation. Experimental results on
the FLSea dataset demonstrate that our student model is lighter
than the teacher model while outperforming lightweight in-air
models. Our network is 60% lighter than the teacher model and
achieves a 3.1% improvement in the δ1 metric compared to the
lightweight in-air model.

Index Terms—Underwater depth estimation, knowledge distil-
lation, lightweight network.

I. INTRODUCTION

Underwater depth estimation aims to automatically deter-

mine the distance from the camera to different objects present

in a submerged image. It is crucial for various applications of

marine robots, including 3D reconstruction, object tracking,

and robot navigation [1]–[5]. There are two primary categories

of learning-based approaches. The first focuses on valuable

priors [6]–[8], enhancing the visual quality by leveraging

object blurriness [6], colorized depth maps [7], and sparse

depth priors [8]. The second category designs frameworks

to transfer underwater images to their in-air counterparts, a

process known as underwater image enhancement [9]. For

instance, Gupta et al. [10] proposed two connected dense-

block-based autoencoders, and Ye et al. [11] trained a frame-

work in an adversarial manner to jointly estimate scene depth.

Despite their success in advancing estimation performance,
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Fig. 1. Loss convergence of knowledge distillation on GuideDepth.

these methods are computationally expensive, limiting their

execution on devices with constrained resources. To deploy

the models on embedded hardware, many works propose

lightweight approaches for in-air images [12]–[15]. These

methods resize the inputs to increase throughput and employ

the pre-trained MobileNetV2 to simplify the network architec-

ture [14], [15]. To strike a balance between low resolution and

fine-grained details, Rudolph et al. [16] integrate the guided

upsampling block (GUB) into the decoder, while relying on the

output of a lightweight encoder. Nevertheless, these methods

are specifically designed for in-air images, overlooking the

inherent complexity of the underwater optical environment.

To solve these problems, we propose a novel knowledge

distillation (KD) framework for lightweight underwater depth

estimation. Specifically, we employ UwDepth [8], a powerful

model designed for submerged images, as the teacher, while

the student model is implemented by a lightweight CNN-

based network, denoted as GuideDepth [16]. As a CNN-

Transformer hybrid architecture, UwDepth can capture valu-

able environment-specific features, such as global underwater

environment information. By distilling this knowledge, our

lightweight model can obtain both global and local infor-

mation, thereby enhancing the estimation performance in the

underwater environment.

To achieve this, we first train a teacher model for

environment-specific feature learning. Subsequently, we con-

duct feature-level distillation on the student model via a

global transformation module (GTM). In contrast to distilling

directly, Fig. 1 shows that GTM can mitigate the bias of

distillation loss, thus facilitating task loss convergence. Once

the local and global information are obtained, we employ a

global-local fusion module (GLFM) to fuse these features

for final estimation. Experimental evaluations are conducted

on the FLSea dataset following [8]. The results show that
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Fig. 2. Overall architecture.

our student model is substantially lighter than the SOTA

underwater model and the estimation performance is better

than the lightweight in-air model. Our key contributions are

as follows:

• We propose a novel knowledge distillation framework for

lightweight underwater depth estimation.

• We devise GTM and GLFM to distill the teacher’s

features efficiently.

• Experimental results show that our model is lighter

than the SOTA underwater model and outperforms the

lightweight in-air model.

II. METHODS

In this paper, we denote the training set as Tr = {xi,yi}Ni=1,

where xi ∈ R
H×W×3 is an RGB image and yi ∈ R

H×W is

the ground-truth depth map. Our objective is to train a depth

estimation model with minimized prediction error on the test

set Ts = {xi,yi}Ni=1.

A. Overall Framework

Fig. 2 (a) illustrates the workflow of our proposed KD

framework. In the training process, we first feed the input

images to the teacher model for depth estimation. Subse-

quently, the environment-specific knowledge from the teacher

model is transferred to the student model during feature-

level distillation. Specifically, this is implemented in three

steps: employing 1) the GuideDepth model for local depth

mapping, 2) GTM for global depth mapping, and 3) GLFM

to fuse these maps for final depth estimation. During the

inference process, the student model can estimate the depth

independently without relying on the teacher model, enabling

a fast-response estimation.

B. Teacher Model Training

The Fig. 2 (a) shows the architecture of the teacher

model. Following UwDepth [8], we feed an RGB image

x ∈ R
3×H×W into the CNN-Transformer architecture G(·),

obtaining the teacher features. These features are subsequently

fed to a regression head R(·) for depth prediction. By min-

imizing the task loss between the predictions and ground

truth labels, we obtain a powerful teacher model G∗(·). The

corresponding teacher features can be acquired as follows:

FT = G∗(x), (1)

where FT ∈ R
DT×H/2×W/2 represents the teacher feature

map, and DT is the feature dimension.

C. Student Model Training

1) Local Context Modeling: To enable a lightweight student

model, we employ GuideDepth [16] as the local student model

Fl(·). It is a convolutional encoder-decoder network, which

is commonly used for in-air depth estimation. By feeding an

RGB image x ∈ R
3×H×W to the local estimation model Fl(·),

the student depth map can be acquired as

MS
l = Fl(x). (2)

2) Global Context Modeling: During feature-level distil-

lation, we propose GTM to learn student global features.

As depicted in Fig. 2 (b), this module consists of three

components: 1) a downsample layer and three 3×3 convolution

layers for feature encoding, 2) a 3×3 convolution layer to align

the feature dimension between the teacher and student, and 3)

a regression head to generate global depth maps. Formally,

the RGB image is denoted as x ∈ R
3×H×W . By sequentially

feeding x to the downsample layer and three convolutional

layers, we obtain features FS
1 ∈ R

DS×H/4×W/4 with the

dimension of DS . To align with the teacher feature dimension

DT , FS
1 are fed to a convolution layer to obtain the student

global features FS
g ∈ R

DT×H/4×W/4. These features are

guided through the mean absolute error (MAE) loss:

Lkd =
1

N

N∑
i=1

∣∣P(FT )− P(FS
g )

∣∣ , (3)

where P(·) is a max pooling layer. We utilize a regression

head to acquire the global depth map MS
g = R(FS

g ).
3) Global-Local Map Fusion: To effectively incorporate

the global and local context information for final depth estima-

tion, we propose a lightweight GLFM. As shown in Fig. 2 (c),

this module consists of three components: 1) a downsample
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TABLE I
ABLATION STUDY OF DIFFERENT MODULES COMBINATIONS

Method Resolution RMSE ↓ rel ↓ log10 ↓ δ1 ↑ δ2 ↑ δ3 ↑ # Params (M) ↓

Teacher (UwDepth) 240 × 320 44.9 4.0 1.8 97.1 98.9 99.5 15.59

Baseline (GuideDepth) 480 × 640 66.1 15.4 6.3 80.1 97.8 99.2 5.83

+ KD 480 × 640 66.0 15.3 6.4 80.3 97.8 99.2 5.83

+ KD-GTM 480 × 640 66.7 14.6 6.1 81.6 97.9 99.2 6.03

+ KD-GTM + GLFM (Ours) 480 × 640 66.3 13.6 5.8 83.2 98.0 99.2 6.16

layer and three 3×3 convolution layers for fused global-local

feature encoding, 2) a 3 × 3 convolution regression head to

generate global-local fused depth maps, 3) a regression head

to selectively incorporate global and local depth maps for

final depth estimation. Specifically, the local depth map MS
l

and global depth map MS
g are first concatenated as MS

gl. By

sequentially feeding MS
gl to the downsample layer and three

convolutional layers, hidden features FS
2 ∈ R

DS×H/4×W/4

with the dimension of DS can be obtained. After that, FS
2 is

fed to the convolutional regression head, obtaining a global-

local fused depth map MS
f ∈ R

1×H×W . These maps are

concatenated with MS
gl at depth level, formulating a composite

global-local map MS
glf ∈ R

3×H×W . MS
glf is subsequently

fed to the regression head to calculate the depth map ŷ =
R(MS

glf ). To optimize the models, we calculate prediction loss

using the ground truth. This loss is a weighted sum of root

mean squared error (RMSE) and scale invariant logarithmic

loss (SILog loss) [17]:

Lpred = λ1LRMSE + λ2LSILog, (4)

where λ1 and λ2 are set to 0.3 and 0.7, respectively. RMSE is

a standard loss function for minimizing errors in actual depth

values, while SILog loss emphasizes errors at close range. We

employ a parameterized adaptation of SILog loss [8], [18] to

balance accurate metric scale estimation and effective relative

depth prediction. These losses are formulated as follows:

LRMSE =

√√√√ 1

N

N∑
i

(ŷi − yi)2, (5)

LSILog = β

√√√√ 1

N

N∑
i

gi2 −
λ

N2
(

N∑
i

gi)2, (6)

where gi = log ŷi − log yi. The overall training loss is

L = Lpred + αLkd, (7)

where α is empirically set to 0.2.

III. EXPERIMENTS

A. Dataset and Evaluation Metrics

In this study, we utilize the publicly available FLSea

dataset [19] for model training and evaluation, consisting of

Fig. 3. Depth prediction examples on the FLSea dataset.

raw RGB images, corrected color images, and ground-truth

depth labels. Collected from 12 different locations, the dataset

contains 22,451 image frames. Adhering to UwDepth’s [8]

methodology, we allocate 10 videos for training and 2 for

evaluation. Although color-corrected images are provided, we

solely use raw images during training and testing. To evaluate

the performance, we employ 6 commonly-used metrics in

current literature [16], i.e., root mean square error (RMSE),

mean absolute relative error (rel), scale-invariant error (log10),

and 3 threshold accuracy (δ1,δ2, and δ3).

B. Implementation Details

The framework is developed using PyTorch [20], and all

experiments are conducted on a single NVIDIA Tesla V100

32GB GPU. Following [8], the input images for both teacher

and student training undergo light data augmentations, in-

cluding resizing images to 480 × 640, horizontal flips, color,

brightness, and depth scaling. Throughout training, models

are optimized using AdamW [21] with a base learning rate

of 1e-4 and a weight decay of 0.9. For teacher training, we

employ the pre-trained MobileNetV2 as the image encoder and

randomly initialize the other components in UwDepth. These

components are trained for 22 epochs with a batch size of 6.

In student training, we utilize the pre-trained DDRNet [22] to

encode the images, training the model for 30 epochs with a

batch size of 16. Our model converges at around 20 epochs, for

a fair comparison, we choose the results from the last epoch

for testing across all experiments.
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TABLE II
SENSITIVITY STUDY

α RMSE ↓ rel ↓ log10 ↓ δ1 ↑ δ2 ↑ δ3 ↑

0.2 66.3 13.6 5.8 83.2 98.0 99.2
0.4 66.3 15.3 6.3 80.6 97.9 99.1
0.6 66.4 15.9 6.4 80.9 97.5 99.1
0.8 67.5 14.9 6.2 82.2 97.9 99.2

C. Results

We serve GuideDepth as the baseline and conduct ablation

experiments as follows: “+ KD” refers to distilling the teacher

features directly, “+ KD-GTM” refers to distilling the teacher

features by using the proposed GTM, and “+ KD-GTM +

GLFM (Ours)” utilizes both the GTM and GLFM. Fig. 3

presents visualization results and Table I illustrates the metric

scores. The results indicate that individually learning teacher

features with a single module is beneficial. The last metric

“# Params” shows that the student network is nearly 60%

smaller than the teacher network. Furthermore, our designed

lightweight modules only increase by 0.3M compared to the

baseline but result in a 3.1% improvement in the δ1 metric.

D. Sensitivity Study

In Eq.7, α is used to balance the contributions of the features

and task losses. To study the impact of different loss combi-

nations on distillation performance, we test the performance

using different α settings. We sample α uniformly in the range

of 0.2 to 0.8 with intervals of 0.2. Table II shows all the

performance metrics achieved under different α. We can find

when α ∈ [0.4, 0.8], the performance drops. The reason can be

it causes overemphasis on global features learning, making the

student model neglect the acquisition of local features. Based

on these experimental results, this work adopts α = 0.2.

IV. CONCLUSION

This paper introduces a lightweight knowledge distillation

framework for underwater depth estimation. In this framework,

UwDepth [8], a powerful underwater depth estimation model,

serves as the teacher model for learning environment-specific

features. The student model, GuideDepth [16], a lightweight

in-air CNN model excelling at capturing local features. To en-

hance the learning process, GTM is introduced as a distinctive

knowledge distillation method to learn global context from the

teacher model. Additionally, we propose GLFM for the pro-

found integration of global and local knowledge for final depth

prediction. Our model achieves outstanding improvement in

both lightweight aspects and overall performance. The ablation

study is also conducted to validate the effectiveness of each

key component of our model.
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