
Towards next-generation federated learning: A case
study on privacy attacks in artificial intelligence

systems

Ekta Sharma
School of Mathematics, Physics and Computing

University of Southern Queensland
Springfield, Queensland 4300, Australia

ekta.sharma@unisq.edu.au

Ravinesh C. Deo
School of Mathematics, Physics and Computing

University of Southern Queensland
Springfield, Queensland 4300, Australia

ravinesh.deo@unisq.edu.au

Christopher P. Davey
School of Mathematics, Physics and Computing

University of Southern Queensland
Springfield, Queensland 4300, Australia

chris.davey@unisq.edu.au

Brad D. Carter
Centre for Astrophysics

University of Southern Queensland
Toowoomba, Queensland 4350, Australia

brad.carter@unisq.edu.au

Sancho Salcedo-Sanz
Department of Signal Processing and Communications,

Universidad de Alcalá
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Abstract—Accurate and trust are crucial for ChatGPT and
other artificial intelligence (AI) markets. One of the challenges
is data leakage, which is frequently overlooked but possesses
highly consequential implications. Federated learning (FL) is
recognised as a new era of secure AI systems. The market for
FL is estimated to reach USD 266.77 million by 2030 according
to Polaris Market Research (1). This paper focuses on FL-based
approaches for improving AI safety and examines the significance
of Deep learning (DL) and its privacy implications. This has
been achieved through six models: Federated Convolutional
Neural Network (F-CNN), Federated averaging CNN (FA-CNN),
Federated Adam (FA), Malicious Generative adversarial network
(MGAN), Federated M-GAN (FMGAN) and Conditional GAN
(CGAN). The authors analysed MNIST and CIFAR-10 datasets
and conducted extensive numerical evaluations to confirm im-
proved user privacy in federated learning for AI models. A case
study with fast convergence speed and excellent asymptotic test
accuracy was designed to outline White-box attacks on MGAN,
FMGAN, and CGAN models. The study also implemented active
inference attacks on deep neural networks without sharing raw
data through FL. We created 256 synthetic images specifically
to test the effectiveness of the original classifier. These coun-
terfeit visuals effectively deceived the classifier, appearing as
legitimate representations of true class labels. Trimming shared
parameters was ineffective in preventing the attack, revealing
limitations in collaborative learning. The generator shows the
least loss of 0.0104 encountered of all models in the study. Our
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Generator is also the fastest after the FMGAN model. FMGAN
performs best with maximum accuracy (0.9613) followed by
CGAN (0.9208), MGAN (0.9163), FA (0.5148), FCNN (0.4376)
and FACNN (0.4285). It also demonstrated high efficiency by
successfully attacking in a short timeframe of 0.7459 milliseconds.
The Federated approach led by Adam exhibited the longest
processing time, at approximately 10.52 minutes. The case study
illustrates the risks of surveillance and manipulation by attackers,
who pressured participants to disclose confidential information.
It also aimed to increase flexibility and robustness. Our work
is accessible to diverse audiences, facilitating the adoption and
practical applications of deep learning methods for privacy
protection by major corporations.

Index Terms—Federated Learning, Artificial Intelligence, Data
Security, Attacks, Deep Learning, Machine Learning

I. INTRODUCTION

Artificial Intelligence (AI) is an ever-evolving and progres-

sive technology. The convergence of data and machine learning

has undeniably resulted in substantial advancements and ex-

hilarating technological breakthroughs, ultimately reaching un-

precedented levels of intelligence. As the internet expands and

attains greater complexity, novel devices are interconnected

with the network, rendering it susceptible to various security

threats. Intrusions are precisely described as endeavours aimed

at undermining the security of computers or networks (2)

Deep Learning (DL) a branch of machine learning (ML),

uses neural networks inspired by the human brain to solve

complex tasks (3). DL surpasses previous ML techniques with

multiple hidden layers. DL is highly effective in computer sci-
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ence and ideal for cyber security, as it can learn, process, and

extract insights from vast data sets. However, emerging attacks

challenge the domain’s information privacy. Nevertheless, DL

engenders privacy concerns as the trained model encapsulates

crucial details regarding the training set, consequently facil-

itating the extraction of sensitive data. Processing extensive

data sets involves time, resources, and computational power

investment. An exemplification of recent and groundbreaking

advancements in Machine Learning is the emergence of a

novel and revolutionary concept known as Federated Learning

(FL). FL can be described as the decentralised variant of

Machine Learning and serves as a crucial methodology for

mitigating the challenges posed by machine learning. It allows

for creating hyper-personalised models tailored to individual

users and intricately distributes the voluminous data across

several devices and servers (4). Figure 1 illustrates the General

architecture of FL where we have shown ’N’ clients. Addition-

ally, applying FL ensures minimal delays and upholds strict

privacy preservation measures.

Fig. 1: General Federated Learning Architecture

Consequently, in a collaborative manner, it processes the

data without any explicit sharing, meticulously updating the

data residing on each device and aggregating it on the main

server to yield and construct a significantly enhanced model

(5). In this paper, our objective is to address a significant

question, namely: what is the potential threat to privacy posed

by DL algorithms when utilising data for training deep neural

networks? In simpler terms, we aim to quantify the extent to

which DL algorithms inadvertently disclose information about

the specific data samples used for training. Also, how FL

affects AI systems, the challenges, open issues, and future

directions. The presence of adversarial examples (AEs) (6)

poses a serious challenge to the widespread adoption of

security-sensitive applications based on Deep Neural Networks

(DNNs). AE attacks exploit the peculiar behaviour of DNNs,

wherein a seemingly harmless alteration in input data can

deceive a well-trained DNN (7). The susceptibility of DNNs to

AE attacks and their counterintuitive responses undermine user

confidence in the decision-making capabilities of these sys-

tems (8). As a result, it becomes imperative and highly crucial

to gain a comprehensive comprehension of AE attacks and take

tangible steps to enhance the reliability of DNNs in real-world

scenarios. In consideration of the capabilities of opponents,

two distinct categories of attacks can be identified: white-box

attacks and black-box attacks. Under white-box settings, the

opponent possesses complete system access regarding both

the target model and data information. Conversely, black-box

settings involve opponents who utilise AE transfer-ability to

apply the created Adversarial Examples (AE) to an unfamiliar

deployed model. From an empirical perspective, white-box

attacks exhibit superior potency when confronted with the

task of compromising a resilient model compared to black-

box attacks (9). Future direction and challenges for intrusion

detection systems were covered by FL in (10). The authors in

(11) demonstrate the capability of participants with conflicting

interests in the FL scenario to efficiently execute active mem-

bership inference attacks against other participants, despite the

global model attaining significant accuracy in predictions. Data

poisoning attacks against FL systems were studied by (12).

Our Contributions for this paper are:

• Analyse the emerging branch of FL towards optimising

the AI training process with the open issues and chal-

lenges.

• Elucidate the importance and privacy of DL through

several models empowered with FL.

• Implement active inference attacks on DL networks with-

out sharing raw data through FL. We discuss a method for

conducting malicious attacks on Generative Adversarial

Networks (GANs), which are renowned for their ability

to perform implicit density estimation in distributed DL

scenarios and check their efficiency and feasibility.

• Analyse the attack strategy and benchmark with other

models to see their resilience against model inversion

attacks.

• Present a tactic of incorporating deception within collab-

orative learning, whereby the adversary skilfully misleads

the victim into divulging highly precise sensitive data.

The structure of this paper is as follows: Section II pro-

vides an overview of the Federated Models and Methodol-

ogy, including the case study models. Following that, the

research data and model architectures are examined. Section

III discusses the details of experiments with the time taken

for training, results, as well as the computational intensity of

the decoding models. Finally, Sections IV and V present the

concluding remarks and suggestions for future research.

II. FEDERATED MODELS AND METHODOLOGY

It is imperative to highlight that the approach to FL pos-

sesses the capability to be customised and adapted in various

ways. For this paper we have developed the following models:
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Fig. 2: The generator successfully employs its capability

to mislead the discriminator by convincingly presenting the

fabricated images as genuine numerical representations. The

classifier correctly classifies fake images, hence the model

succeeds in deceiving. Rows of images depict 20 epochs in

a set of 5.

Fig. 3: The generator successfully generates images of num-

bers 0 to 9.

A. Federated Convolutional Neural Network (FCNN)

We developed and implemented a streamlined simulation

pipeline using a CNN trained with FL. This model trained the

CIFAR-10 dataset federated over 10 clients, updating model

parameters. Each pairing had 5000 samples with 80% testing,

10% validation, and 10% testing samples. In the Centralised

training phase, we trained on a singular location with one train

loader and one validation loader to simulate the current reality

of machine learning projects. By training the simple CNN on

CIFAR-10 split for 5 epochs, we obtained a substandard test

set accuracy of about 41%. This model serves as a reference

point to establish a basic and centralised training pipeline for

future FL models and case studies. The CIFAR-10 dataset

was split into multiple partitions to simulate scattered data

from different organisations or in a cross-silo FL setting. This

resulted in ten training sets and ten validation sets representing

ten distinct organisations. In the FL system, each organisation

acts as a client, resulting in ten clients connected to the FL

server. In FL, the server shares global model parameters with

the client. The client modifies the parameters by training

the local model with its data and then sends these updated

parameters back to the server. Alternatively, the client can send

only the gradients instead of the entire set of parameters. We

use two helper functions: one to update the local model with

received parameters from the server, and another to obtain the

updated parameters from the local model. Finally, the current

local model parameters are returned, which were received from

the server, used for local training, and then sent back as the

updated parameters. In another aspect, the model parameters

are received from the server and evaluated using local data.

The evaluation result is then sent back to the server.

B. Federated averaging CNN (FA-CNN)

This model uses the FL strategy of utmost centrality with

steps including client sampling, model distribution, aggrega-

tion, evaluation, and other consequential tasks. The strategy

embodies the FL algorithm - FedAvg, designed for efficient

distributed training on a large scale involving numerous clients

(13). Clients ensure data privacy and security by storing it

locally. A central parameter server mediates coordination and

communication among the clients. Clients are created locally

for training, and their metrics are consolidated efficiently. A

global model is formed by averaging the models of participat-

ing clients. The performance of the global model is evaluated

using a small, centrally located set of tests. If no centrally

located dataset is available, the evaluation of the global model

must be decentralised.

C. Federated Adam (FA)

This proposed framework enhances the FL approach with

a tailored FedAdam strategy. We customised the FL system

using CIFAR-10 training and test sets divided into ten smaller

subsets. Our system includes novel functionalities such as

parameter initialisation, custom strategy selection, model eval-

uation options, and value exchange with clients.

D. Case Study with Malicious Generative adversarial network
(MGAN), Federated MGAN (FMGAN), and Conditional GAN
(CGAN)

A generative adversarial network (GAN)(14) is an advanced

ML model that captures participant data. It uses two neural

networks (discriminative and generative) to enhance prediction

accuracy. The discriminative network distinguishes real from

generated images, while the generative network learns from

random noise to mimic the training set. Assuming 10 clients

with different classes of data, we used weight averaging

aggregation instead of uploading or downloading specific

parameters. However, this aggregation is difficult to converge

due to the non-independent and identically distributed nature
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of the data. To address this, we follow the strategy of a warm-

up training with 5% of the data to improve accuracy(15). We

also ensure fairness by using the same number of epochs

as other models. The process ends when the discriminative

network can no longer distinguish between samples from the

original database and the generator’s samples. The classifier

and discriminator models are distinct, with one for the original

classifier and one for training the generator. The models

produce outputs across 11 classes, with the final class 10 used

for categorising counterfeit images. During training, there are

two instances of gradient backpropagation. The first instance

includes genuine data, authentic labels, and falsely generated

images labelled as 10. This helps the discriminator distinguish

between real and fake images. In the second instance, the

generator creates images for each authentic label to imitate

the genuine data and deceive the discriminator. Both generator

and discriminator losses are returned for plotting. We then use

the generator to produce images for a range of target labels

and assess whether the original classifier can correctly classify

the generated images. If the classifier accurately recognises

the generated images, our attempt to deceive it is successful.

This is demonstrated in Figure2. If the classifier fails to

recognise the images as numerals, the generator fails. The

losses endured during discriminator training should closely

resemble the losses during generator training for effective

deception. The generated models were evaluated based on loss

and accuracy. We generated 256 artificial images to attack the

original classifier. It is important to note that these counterfeit

images effectively deceive the classifier.

E. Data and Model Architecture

We conducted a numerical assessment of the performance

of the suggested algorithms by measuring the test accuracy

on two extensively acknowledged datasets: MNIST (Modified

National Institute of Standards and Technology database)(16),

CIFAR10 (Canadian Institute for Advanced Research)(17).

MNIST is a large database of grayscale handwritten images of

digits ranging from 0 to 9 that is commonly used for training

various image processing systems. The dataset is comprised of

a total of 60,000 training data records and 10,000 test records.

MNIST database and the CIFAR-10 dataset are widely used

for training and testing in machine learning and computer

vision algorithms.

A collection of six functional models was created in this

study. They are: Federated CNN (F-CNN), Federated av-

eraging CNN (FA-CNN), Federated Adam (FA), Malicious

Generative adversarial network (MGAN), Federated M-GAN

(FMGAN), Conditional GAN (CGAN).

Intel i9 Generation with Windows platform was used to

design all the models with a memory of 16 GB and a processor

of 3.5 gigahertz. Tensor Flow, Scikit-learn and Keras were

utilised as open-source libraries in the modelling process

with the Python programming language. In FL, the effective

establishment of distinct data partitions for each client is

accomplished through a set of partitions in the ratio of 80%

training, 10% validation, and 10% testing subsets. It is to be

noted that there is no standard rule for data partitioning. We

generated small training and test sets for each edge device and

encapsulated each set into a PyTorch data loader or Jupyter

Notebook. Some models were also run in Google Colaboratory

giving access to powerful computing resources, such as GPUs.

For our simulations, we avoided performing any preliminary

processing on the data. The exclusive manipulation conducted

on the data entailed adjusting the scale of each image to

fall within the prescribed range of −1 and +1, following

the methodology described in the published research (18).

This conformed to the sophisticated generator model which

incorporates a hyperbolic tangent tanh activation function in

its concluding layer (18). Consequently, this results in outputs

that strictly adhere to the normalisation range between −1 and

+1:

INORM = (I − IMIN )/(IMAX − IMIN ) (1)

In equation 1 IMIN ,= The minimum value of input, IMAX ,=
The maximum values of input received, and INORM = The

normalised input.

All models were limited in depth beyond linear layers,

pooling, and dropout, allowing for fair comparisons between

models. The CNN used a three-layer configuration for in-

creased capacity and was tested for 20 epochs to ensure

accuracy per theoretical guidelines. Subsequently, the perfor-

mance of each model was benchmarked. Additionally, the

authors took the crucial aspect of overfitting in the model

formulation. It is important to acknowledge that underfitting

may occur when a machine learning framework does not

converge within the expected timeframe, indicating that the

framework may not have the required flexibility to capture

the most significant data patterns. The study employed a grid

search methodology to facilitate successful model learning. By

evaluating model accuracy and loss, the optimal architecture

was determined. The authors acknowledged the importance of

activation functions (AFs) in constructing a strong model. As

such, activation functions such as ReLU, sigmoidal, SoftMax,

and hyperbolic tangent were utilised to assess the performance

of the models and determine the most suitable option (19).

In this study, it should be emphasised that the loss function

utilized is cross-entropy, with target values within the set of

0 and 1. Additionally, it is worth noting that a comprehensive

search for optimal hyper-parameters may be labour-intensive,

given that each model demands around 15 hours (20). How-

ever, through careful parameter selection, the authors were able

to significantly reduce the overall computation time for the

model to below 15 minutes.

III. RESULTS AND DISCUSSION

Table I displays the models created, highlighting the

optimal attack model in red. Our comparative approaches

are evaluated against the model that demonstrated the high-

est performance across all models. It is observed that the

evaluation methods on the client side and server side exhibit

notable differences. The centralised or server-side evaluation is
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relatively straightforward, comparable to the evaluation tasks

performed in centralised machine learning. This evaluation

allows us to assess the model after each training round using

the server-side dataset. Moreover, the advantage lies in the

constant accessibility of the entire evaluation dataset.

TABLE I: Models Developed in the study. Most feasible model

is shown in RED

S.No. Model Accuracy Loss Time (in
seconds)

1 Case Study Model:
Federated M-GAN
(FMGAN)

0.9613 0.1898 0.7459
milli-sec

2 Case Study Model:
Conditional GAN
(CGAN)

0.9208 0.0104 9.7301
milli-sec

3 Case Study
Model:Malicious
Generative
adversarial network
(MGAN)

0.9163 0.2013 18.89

4 Federated Adam (FA) 0.5148 0.0426 631.69
5 Federated CNN

(FCNN)
0.4376 0.0616 196.93

6 Federated averaging
CNN (FACNN)

0.4285 0.0489 369.25

On the other hand, Federated Evaluation or client-side

evaluation is an intricate yet powerful approach. In the domain

of FL, clients follow similar fundamental principles to those

found in a traditional centralised setup. However, there is a

notable distinction in that they operate on a smaller dataset

that has not been encountered before.

It removes the requirement of a centralised dataset and

empowers the evaluation to be conducted over a more ex-

tensive range of data, yielding more realistic outcomes. This

method proves essential in numerous models to attain truly

representative evaluation results. Nevertheless, it does come

with a drawback. The dynamic nature of the evaluation dataset,

which is subject to changes as clients become unavailable

and the dataset held by each client evolves over successive

rounds, can lead to varying evaluation results, even if the

model remains unaltered.

In FCNN, we deployed 10 clients on a single machine.

This setup can potentially result in resource depletion, even

when only a fraction of clients are actively involved. This

configuration enabled seamless resource sharing between the

server and the 10 clients, encompassing CPU, GPU, and mem-

ory. However, it should be emphasised that employing such a

setup on a single machine may rapidly deplete the available

memory resources, even if only a subset of clients actively

participated in each round of FL. Additionally, it is important

to recognise that our model operates on various machines,

allowing the server and clients to function independently.

The client actively trains the model on the device and later

sends the resulting model to the server. Subsequently, the

server evaluates the overall performance of the global model

on the client’s validation set while assessing the degree of

personalisation accomplished. After this analysis, the server

provides the client with suitable parameters for initialising

their local model. The parameters of the client’s model are

then converted into NumPy arrays and promptly sent to the

server.

In FACNN, FedAvg proves to be a straightforward and

highly potent model for experimenting. In this simulation, the

FedAvg mechanism has proficiently and impartially chosen

ten clients from a pool of ten eligible candidates. These

selected clients trained the model, and their individual pa-

rameter updates are then seamlessly merged by FedAvg. This

leads to a fresh global model, which is utilised in the next

round of FL. The simulation does not consolidate metrics

in the generic metrics, such as the accuracy key. Due to

the potential heterogeneity of metrics and the inclusion of

non-metric value pairs, the framework lacks the automatic

handling ability for such cases. To address and consolidate

these custom metrics, metric aggregation functions are needed.

These functions are invoked by the strategy during fit or

evaluate operations. Our model adopts the weighted average

function to aggregate custom evaluation metrics and derive a

solitary accuracy metric spanning all clients on the server side.

In FA, The improvement provided our system with adaptability

and the execution of personalised client-side operations by

transmitting arbitrary values.

The case study investigates MGAN, FMGAN, and CGAN.

It presents and implements active inference attacks on deep

neural networks in a cooperative environment and shows

possible improvement without raw data sharing through FL.

The objective is to enhance flexibility and strength to improve

the CGAN. This involves the periodic transmission of model

parameters to a central server and the aggregation of local

models into global models. This iterative process continues

until the desired accuracy of the learning model is achieved.

With each utilisation of the generator, it successfully produces

novel random noise to ensure an extensive range of random

noise observed by the generator. The definition of an image

by the generator is regulated by the concatenation of the one-

hot encoded image index and the random noise. Consequently,

the generator is effectively conditioned on the one-hot encoded

image while employing random noise to introduce diversifi-

cation in the generated images. It should be duly highlighted

that these forged visuals effectively mislead the classifier, as

it perceives them as authentic representatives of the accurate

class labels.

The exceptional level of precision by the generator signifies

its ability to generate images that closely resemble the original

training images. Moreover, it has successfully deceived the

independently trained classifier using the original training data.

This situation can still be viewed as a white box attack since

we possess knowledge of the network structure of the original

classifier, which we utilise for training our discriminator.

Adopting a different architecture for the classifier can be seen

as a black box attack by training the generator to mimic the

original training data. This has been clearly shown in Figure2

and Figure3. In the latter, the generator successfully generates

images of numbers 0 to 9 making the model successful.
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Fig. 4: Testing and Validation Accuracy of FMGAN model. The loss of all models used in the Case study is also shown.

FMGAN shows maximum accuracy and CGAN shows minimum overall loss.

Models of the case study perform better as compared to

other Federated approaches. Figure4 illustrates the Loss of all

case study models as well as the accuracy of the FMGAN

model. Figure5 shows the accuracy of case study models.

FMGAN performs best with maximum accuracy (0.9613)

followed by CGAN showing 0.9208 and MGAN with 0.9163

accuracy. FMGAN is also the fastest model with an attack

completed in 0.7459 milliseconds. The generator effectively

tricks the discriminator into believing that the generated im-

ages represent authentic numbers. The generator was also

trained using concatenated labels and input noise and it shows

the least loss of 0.0104 encountered of all models in the

study. Our Generator is also the fastest after the FMGAN

model. Figure6 illustrates the accuracy of the remaining mod-

els. FA shows maximum accuracy with 0.5148 followed by

FCNN showing 0.4376 and FACNN with 0.4285. This case

study shows the possibility of unwarranted surveillance and

manipulation by potentially harmful attackers on the model’s

progression, thereby pressuring participants to disclose con-

fidential information related to their datasets. The trimming

the shared parameters fails to counteract the attack since it

continues to be formidable given the adequate accuracy of

localised models. In the context of collaborative learning, it

is crucial to acknowledge that any user infringes upon the

privacy of fellow users within the system, even without the

direct involvement of the service provider. Conversely, this

case study underscores the notion that collaborative learning

may be considered less preferable when compared with the

centralised learning approach it seeks to replace.

Fig. 5: Accuracy of case study models. The trend line shows

the maximum accuracy of the FMGAN model.

IV. CONCLUSIONS

Federated Learning has shown significant potential in pre-

serving user privacy and generating robust models by ag-

gregating results and identifying common patterns from a

large user base. This approach facilitates self-training and

secure user data storage, resulting in an increasingly intelligent

system capable of continuously testing itself. Consequently,

our training and testing processes become more sophisticated

with this approach. The study moves to ensure the security

and privacy of AI systems. However, as this field is still in its

early stages and faces various challenges regarding design and

deployment, the effective approach to address these challenges

is to create a clear definition of the FL problem and develop a

refined data pipeline suitable for productive implementation.

A range of unique technical challenges have been suc-

cessfully identified in this study and addressed through the
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Fig. 6: Accuracy of remaining models. FA shows maximum

accuracy followed by FCNN and FACNN models.

adaptation of methods such as Federated Average Fed Adam

and observed in malicious attacks, thereby implementing on

various models including several Federated versions, CNN,

GAN, and C-GAN. Our work effectively showcases the utili-

sation of FL while maintaining good training performance and

significantly reducing training time, surpassing conventional

methods for convergence time and test accuracy. Moreover, the

proposed algorithms exhibit fewer hyper-parameters, offering

the potential for considerably expedited training. The models

and case studies highlighted in this document serve as an

initial step to elucidate and assess the successful execution

and functioning of FL.

These attacks allow us to measure the amount of private

information that can be leaked from the parameters and param-

eter updates of trained models during the training process. We

have created inference algorithms for both centralised and FL,

considering passive and active attackers with varying levels of

prior knowledge.

V. FUTURE RESEARCH

In this study, some areas were left unresolved for further

investigation. The potential scenarios can also be broadened

by utilising a variety of complex datasets such as CIFAR100,

Llama, CLIP, and ImageNet. Future researchers may also

consider examining privacy risks both before and following

the implementation of proposed Federated Learning models.

This analysis could further strengthen the adaptability and effi-

ciency of the models. The goal is to develop effective strategies

to mitigate attacks on Low Earth Orbit (LEO) Satellites. Poten-

tial solutions may include leveraging advancements in secure

multiparty computation or encryption techniques. However,

it is important to note that privacy-preserving collaborative

learning can circumvent the need for these resource-intensive

cryptographic methods. Secondly, the proposed solutions de-

rived from these alternatives would still be susceptible to

specific attacks as discussed. So, another potential strategy

to consider entails embracing differential privacy at different

levels of granularity. Implementing differential privacy at the

user or device level would provide robust protection against

the attacks formulated in this case study.

In conclusion, we anticipate that this work will have a

meaningful impact in real-world scenarios and prove advan-

tageous for leading organizations as they evaluate federated

or decentralised deep learning approaches to safeguard user

privacy.
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