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Abstract — We deployed a prototype autonomous vehicle
(AV) equipped with self-driving capabilities. This is
demonstrating the AV proof-of-concept (POC) of the last mile
delivery within the integrated wildlife parks. The research goal
is to develop an environment-aware Artificial Intelligence (AI)-
enabled automated food delivery system for the Smart Zoo
project. Advancing the safety and robustness of the perception-
planning system of the automated driving software for the
delivery use case, underscored the success of the AV prototype
demonstration of the last mile delivery marking the first
demonstration at the Singapore Zoo.

Keywords — autonomous vehicle, artificial intelligence, image
recognition, perception system, planning system.

I.  INTRODUCTION

The Smart Urban Mobility [1] is a Singapore government
initiative recognizing the potential of automation technologies
into the transportation sector. Self-driving shuttles were
introduced and several trials of autonomous vehicles (AV)
were conducted for the first-and-last mile connectivity [2].
There's a visible shift in the last-mile delivery market towards
automation increasing the demand for autonomous solutions.
The COVID-19 pandemic has created a growing demand for
safe and efficient last mile delivery solutions in the
transportation of food, medicines, and essential goods. In
transportation and logistics system we have seen drones or
unmanned aerial vehicle (UAV), unmanned ground vehicle
(UGV), autonomous vehicles (AV), sidewalk autonomous
delivery robots (SADR) or autonomous mobile robots (AMR)
as micro mobility last-mile delivery demonstrations and
deployment in outdoor spaces. The contribution and benefits
of these deployments in terms of safety, increased mobility,
economic and societal contributions, pollution reduction, and
improved efficiency and convenience [3].

In the context of Mandai Wildlife Group (MWG), the
project owners is introducing a Smart Zoo initiative aimed at
digital transformation and automation. MWG oversees the
management of the Singapore Zoo and other wildlife park
attractions, including Night Safari, River Wonders, and Bird
Park, spanning a total land area of 28 hectares. The workforce
consists of 2000 employees engaged in park operations, park
rangers, and animal welfare. The zoo attractions draw 4.6
million visitors, comprising both local and international guests
visiting Singapore. MWG recognizing this opportunity aims
to enhance staff welfare and productivity by automating the
food deliveries for staff across the integrated wildlife parks.
This is by using an automated vehicle equipped with an
environment-aware and Al-enabled system. The requirement
is to demonstrate a working prototype capable of navigating
various wildlife terrains through route optimization while
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practice of collecting the food at the F&B restaurant by each team & to be
delivered (b) AV last-mile delivery automated system on trial — Zoo staff at
stationt#l collecting the food meal boxes on time (c) station#2 of the AV on
trial reaching its assigned destination - Zoo staff collecting the food meal
boxes on time.

ensuring that the packed meals remain warm. The solution
should excel in open spaces and outdoor environments,
reliably delivering to multiple drop-off destinations [4].

To address these challenges, we developed and deployed
an AV equipped with sensors and an Al system capable of
self-driving, object detection, obstacle avoidance, and
navigation within the zoo parks. The AV is tasked with
delivering pre-packed food meals to staff stationed at different
locations in the zoo parks. Fig.l illustrate the manual
collection and delivery system and our AV on trial last-mile
delivery on its test deployment. While in Fig.2 shows the
informational map and processed point cloud map in birds eye
view (BEV) of the whole delivery route. This presents the
necessity for automated driving, route optimization, and
adherence to predefined routes from the charging station,
kitchen, and various drop-off stations. The zoo environment is
characterized by low-speed zones and mixed traffic consisting
of pedestrians, vehicles (passenger trams, buggies, lorry
trucks, etc.), and personal mobility devices (PMDs), narrow
roads with minimal lane markings and strict driving
regulations. The terrain exhibits small slope gradients and
uneven curbs, with ongoing construction in some areas
designated for expansion. The construction safety fences may
encroach upon road lanes as the development progresses (see
Fig. 5 for the illustration).

The complex environment and high-density traffic
present safety concerns. The perception, and planning
algorithms must have the functions to adapt the AV driving
policy in unclear lane boundaries. Furthermore, the perception
system must accurately detect and recognize Vulnerable Road



AV food deliverv stations & route
(a)

Fig.2. Singapore Zoo wildlife parks map representation (a) MWG map
with road details and route overlayed with photos of the delivery stations
(b) point cloud data meshed map processed (down sampled) inset section
was enlarged for added information.

Users (VRUs) with special consideration for animals, to
prevent collisions and ensure protection. The planning system
can handle localization based on its position, especially in
areas where determining self-position is challenging due to a
lack of high-precision maps. Additionally, the AV must
implement robust safety measures and protocols to mitigate
potential risks, hazards, and unexpected events that could
endanger VRUs, animals, and other vehicles on the road.

The AV proof-of-concept aims to address the identified
challenges of the perception-planning system. Our
contribution to the Al and AV research goals are the
following:

e  Examine the operational design domain (ODD) of the
zoo environment. Identify the challenges of the last
mile delivery use case to align with the AV capability

and the Al system.

Develop, test, and verify the various functions of the
perception, and planning algorithms. Integrate the
safe and robust Al system to determine the safe
driving approach in low-speed zones, crowded, and
high-density mixed traffic with unclear lane
boundaries of roads in the zoo park.

Evaluate the performance of the AV capability and Al
system in relation to the KPI metrics agreed with the
MWG project owners.

The paper consists of five sections. Section II outlines the
related research on perception and planning systems, another
implementation of AV last mile delivery. In Section III,
describes detailed methodology and our approach in
developing the AV prototype, including hardware and
software integration. Section IV presents the discussion of the
evaluation, assessment results, and lessons learned. Finally,
the conclusion the summary of the results of the AV POC
demonstration and added future research directions for
enhancing the capabilities of the AV system with Al functions
in other last mile delivery use cases.

II.

Some of the significant challenge in automated driving is
developing robust and reliable algorithms for the perception
and planning system. This section examines selected studies
that have contributed to the development of the AV systems,
emphasizing their impact on the safety and efficacy of last-
mile delivery.

RELATED WORKS

The pioneering works of Kato et al. discuss implementing
Autoware on embedded systems, emphasizing LiDAR and
cameras for real-time perception and navigation [5].
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Fig.3 The process highlights the steps in the AV development process
following the safety development standards (a) component development
approach on each stage of the prototype development process (b) following
the formal development standards adopting the V-Model.

OpenPlanner 2.0 by Darweesh et al. enhances behavior
prediction and trajectory planning, integrating various
sensors for dynamic environment navigation [6]. In the
previous works of Tong et al. they develop a search-based
motion planning framework incorporating sensor health
monitoring for fault management [7]. While Carballo et al.
integrate model-based support with CNNs for navigation in
urban landscapes, facing challenges in varied environmental
conditions. Their ongoing research aims to enhance learning
algorithms and adaptability to diverse scenarios [8]. The AV
prototype of Chong et al. developed an autonomous personal
vehicle for urban transportation, utilizing GPS and LiDAR
for navigation [9]. The works of Novotny et al. explored a
ROS-based architecture for a campus delivery robot,
integrating 3D LiDAR and cameras [10]. While Gao et al.
designed an autonomous delivery robot with LiDAR, IMU,
and GPS for mapping and navigation [11]. In the studies
Masood et al. discussed the transition to fully autonomous
urban freight vehicles, highlighting operational efficiency
improvements [12]. Lastly, Buchegger et al. presented an
autonomous vehicle for urban parcel delivery, featuring
advanced path planning and obstacle avoidance systems. The
challenges of navigating highly dynamic urban landscapes
were noted, with a call for improvements in real-time
adaptability and sensor accuracy [13].

III. METHODOLOGY

A. The AV prototype development process

In developing the AV prototype last-mile delivery system,
adherence to the ISO 26262 [14] safety development standard
is crucial. This standard provides a systematic approach to
ensuring functional safety in automotive systems, including
AVs. The development process involves hazard analysis and
risk assessment to identify potential hazards and assess
associated risks, defining safety goals and requirements
based on these assessments. Safety mechanisms and
functions are then implemented to meet these requirements,
with verification and validation activities ensuring
compliance throughout the development lifecycle. By
following ISO 26262, the development process
systematically integrates safety considerations into every
aspect of the AV prototype, enhancing its safety and



Test venicle

Steering wheel
molar & encodes

(a)

Fig. 4. Hardware & sensors integration, vehicle modification - test vehicle
2-seater golf buggy (Procar cargo elite) (a) illustration of the hardware,
sensors, and interfaces (b) actual AV on trial for the last-mile delivery use
case.

reliability for real-world deployment. The development
process we followed in our previous work [15-16] as
illustrated in Fig 3.

B. Compute, Sensors, and Actuators

The test vehicle was equipped with various sensors for
detection and recognition: two Mynteye stereo cameras (front
and rear view), Velodyne (VLP-16) LiDAR for HD mapping,
localization, obstacle detection, and avoidance, GNSS+RTK
for accurate positioning, and IMU for precise pose and relative
position measurement. A custom-built steering motor and
encoder were installed for steering, brake, and throttle control.
The compute system, including Jetson AGX Orin, power
supply, network hub, and peripherals, was mounted on a rack
placed at the roof deck of the payload. The customized AV kit
interfaced with the Curtis controller software for seamless
operation. The components are presented in Fig. 4 with the
actual AV prototype.

C. Automated Driving System

The ADS is composed of the software stack adopted from
the Autoware framework. The software design consists of the
ROS-based system in Ubuntu 18.04. The software integration
into the AV prototype ADS software stack capable of
navigating vehicles autonomously in various environments.
The software stack of perception, planning, and control
system has its algorithms that we adopted and modified to
develop a comprehensive and robust solution for AV last-mile
delivery, capable of navigating autonomously and safely in
the wildlife parks drivable environment. The perception
system operates the vision-based environment awareness
includes various sensors such as LiDAR, cameras, GPS and
IMU for environment perception, object detection, and
localization. The localization module utilizes data from GPS,
IMUgs, and laser sensors to accurately determine the vehicle's
position and orientation in the environment. The point cloud
data is collected to generate the HD map of the entire zoo
environment (mapping the route of the AV last-mile delivery
service). The planning module generates safe and efficient
driving trajectories based on sensor data, maps, and high-level
mission goals, considering factors like traffic rules, vehicle
dynamics, and obstacle avoidance.

D. Perception-Planning System

In this paper, we describe the perception-planning system
approach in solving the safety challenges for the crowded and
high-density mixed traffic with unclear lane boundaries
environment in the zoo parks.

1) Perception-Planning System Architecture
The perception module has the following components:
e Object recognition — detection of dynamic
objects — pose and velocity.
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Fig. 5. Zoo environment with selected scenarios and observations. The
challenges of the AV sensing and perception with the navigation and
motion planning on a low-speed, mixed and heavy traffic environment.
(a-c) The ongoing construction (presence of trucks), and (d) structural
changes & fence encroaching the road; (e & f) parked trams along the
road; (g-h) crowd of visitors in the zoo parks.

Tracking — continuous frames of detected
moving objects.
Prediction — predicts trajectories of moving
objects.
The planning node is composed of the following:

e  Mission planning — route planner
Scenario planning — lane driving and parking
scenario. Lane driving scenario — behavior
planning and motion planning.
Trajectory tracking and validation.

We explored the perception-planner modules and
determine the output of each that contribute to driving policy.
Then determine the calculation of the best trajectory and
looking into the vehicle motion, safety, instructions for the
next path, and traffic rules. The verification and validation of
the safe trajectory according to the use case is also considered.

2)  Perception and Planner Interface

The interfacing for inputs and outputs of the

perception-palnning node are the following:

e Inputs Image, HD and vector map,
(perception) obstacle and object information,
occupancy map, (localization) vehicle motion,
(system) operation mode, (HMI) feature
executing such as lane change, intersections,
(API) final position of the destination,
checkpoint (midpoint) calculated into the route,
and the max speed (velocity limit).

Outputs dynamic  objects, obstacle
segmentation, occupancy grid (perception),
trajectory and turn signal feed to control,
diagnostics report of the state of the planner
(system), feature execution such as lane change,
intersections;  next  trajectory  (HMI),
information for safety behavior to the planner
such as objects position and avoiding obstacles
and decision to stop (API).

The route level and path information for the
starting point and destination.

Drivable area of the defined region where the
trajectory is calculated.

Trajectory are points or waypoints with certain
intervals,  velocities, accelerations, and
positions fed into the controller. The safety
distance and validation added.

3)  Perception-Planner functions



Selected perception and planning component
functions are highlighted in this paper. The
functions are based on the scenarios observed in the
zoo park according to the traffic environment. The
planner functions used to the identified scenario are
the following:

e Route planning

Path planning

Obstacle avoidance, obstacle stop, obstacle
deceleration.

Path smoothing

The following test case scenarios are:

e Scenario 1- moving pedestrians ahead of the
ego vehicle

Scenario 2 — moving pedestrians near or the
side path of the ego vehicle

Scenario 3 — passenger tram approaching the
path of the ego vehicle

Scenario 4 — moving vehicle in-front of the ego
vehicle

E. Perception-Planning system methods

We explore the following methods and investigate the
performance of each function.

e Setting the desired velocity to ensure it follows the
speed limits, traffic rules, and safety guidelines. A
representation of the path (set of waypoints).
Equations to calculate the desired velocity at each
waypoint based on constraints. Adjustments to these
velocities based on dynamic data (e.g., detected
obstacles).

Using the waypoint follower taking the planned
waypoints follower with the vehicle dynamics and
kinematics. Waypoints with desired velocities.
Control algorithms (like a PID controller) to minimize
the error between the current state and the waypoint.
Adjustments based on dynamic environment data.
Considering the static and dynamic obstacles, traffic
rules, and possible scenarios for a safe and efficient
path. (1) State Space: Define the space in which the
vehicle operates. This is a 2D plane (if considering
only position) or higher dimensions for orientation,
velocity, etc. (2) Cost Function: For any given path,
there's an associated cost related to path length, time
taken, energy consumption, etc. Where a cost function
associated with traversing through a point in state
space.

IV. RESULTS AND DISCUSSION

The POC observations of the perception and planning
system in the AV prototype last-mile delivery focus on the
ways of how robust and improve the components of safety
aspects of the automated driving system. In addition,
improving the image recognition aspects and motion speed
profile and the obstacle avoidance/detection in relation to stop
and deceleration range. We highlight the identified test case
scenarios namely: (1) Scenario 1- moving pedestrians and
animal (monkey and peacock) ahead of the ego vehicle; (2)
Scenario 2 — moving pedestrians and animal (monkey and
peacock) near or the side path of the ego vehicle; (3) Scenario
3 — passenger tram approaching the path of the ego vehicle;
(3) Scenario 4 — moving vehicle in-front of the ego vehicle.
These scenarios informed our team on the lessons encountered
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Fig. 6. The perception system approach and observations. (a) recording the

initial test images (animals — peacock & monkey standee (b) training &
validation of the detection pipeline (c) real peacock & (d) real monkey in
real-time detection (e) tram detected as bus (f) construction truck and others
misclassified object (movable for the boots) detected.
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Fig. 7. Results of the training model for the object detection. Sample test
for peacock and monkey standee and real animals (a) confusion matrix (b)
precision and recall curve

and improve on the design consideration, safety approaches,
and addressing the challenges in perception and planning
system. It is also important consideration and understanding
on the full details of the HD map with respect to the
environmental infrastructure and other road changes and
traffic events.

1) Perception

The initial observation of the animals was recorded on the
mapping of the zoo environment and initial trial runs. To get
the images and protect the animal (monkey and peacock)
usually loitering around for this encounter we printed a mock-
up cut-off board standee. This process is to record and train
the images of the monkey and peacock at different backdrop
of the environment. This is like Internet images being
harvested and collated for the image scanning and filtering to
extract the features of the image frame of interest for the object
recognition task. The class labels in our collection are
pedestrian, bicycle, motorcycle, car, bus, truck, animals,
monkey, peacock, and movable (traffic cones). The existing
training model for the image recognition from our Al system
dataset is from the 500 driving hours. The dataset collectively
has 500,000 annotated labels. The framework is Pytorch and
using YOLO (You Only Look Once) [17] CNN object
detection pipeline. The pipeline (DarkNet) has 19 CNN layers
and 5 max pool layers. The curated images and training set
was used in the object detection and classification in the
experiment. Similarly, we incrementally adjust the dataset
according to the collected data by augmenting the dataset with
rotation, orientation, filtering using a special software to add
variety to the image. Additional class labels of the animals
were considered in the experimental data aside from the initial
observation. Therefore, this process can help in the dataset and
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Fig.5. Test case scenarios of the path planning algorithm AV on-road trials at the Zoo parks. (a) Scenario 1 - moving pedestrians ahead of the ego vehicle.
(b) Scenario 1 —moving pedestrians detected in the path of the ego vehicle. (c) Scenario 2 — moving pedestrians near on the side of the path of the ego vehicle.
(d) Scenario 2 — moving pedestrians were detected but not obstructing the path of the ego vehicle. (e) Scenario 3 — passenger tram approaching the path of
the ego vehicle. (f) Scenario 3 — passenger tram detected in the path and the ego vehicle stopped at safe distance (g) Scenario 4 — moving vehicle in-front of
the ego vehicle. (h) Scenario 4 — the ego vehicle maintained a safe distance and speed behind the moving passenger tram.

robust collection for improving the training model. The
process can also improve the planning system to observe the
behaviour of the motion planning component. In addition,
assess the safety aspect with respect to the identified scenarios
in the experiment. The result has a mAP of 95% accuracy at
10 fps. The object detection accuracy fits to our criteria
accordingly with the KPI of the Al enabled AV last-mile
delivery system. See Fig. 7 of the training model mAP and
precision-recall results.

2) Motion Planning & Navigation

In our implementation, effective localization relies on
understanding the route and motion planning approach
through pose estimation in the HD map. The map is divided
into 5 sections, with the AV buggy delivery navigating from
the Ulu-ulu restaurant to the Zoo area, stopping at stations 1
to 4 delivery the destination. To conserve compute resources,
the HD map is loaded per section of stations along the
trajectory. Waypoints are recorded at each station to facilitate
proper localization within the map. Challenges in the zoo road
network include missing map features and terrain variations,
complicating global planning and navigation. The planning
system adjusts the AV's speed based on designated limits and
environmental conditions, ensuring safe operation and
adaptability to dynamic situations. It continuously evaluates
surroundings to generate paths that avoid collisions and
navigate through crowded environments. In unpredictable
scenarios, it executes safe stops and manoeuvres to prioritize
VRU safety. Customizable algorithms enable improved
performance in various driving conditions.

3) Test case scenarios
We record, evaluate, and analyse the performance of AV
buggy delivery navigation from the different scenarios as
identified in the test case. [llustrated in Fig. 5 are the selected
observations.

a) Scenario 1- moving pedestrians ahead of the ego
vehicle.
b) Scenario 2 — moving pedestrians near or the side path

of the ego vehicle.
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¢) Scenario 3 — passenger tram approaching the path of
the ego vehicle.
d) Scenario 4 — moving vehicle in-front of the ego

vehicle.

The verification and validation of each test case scenario
were conducted in simulation and calibrated during pilot tests
in zoo parks. Analysis of vehicle speed and distance relative
to trajectory and obstacles was performed. Graphs illustrating
the four scenarios were plotted. In Scenario 1, with pedestrians
ahead, the ego-vehicle slowed down, maintained a safe
distance, and temporarily parked until the path cleared. In
Scenario 2, pedestrians near the vehicle's path were detected,
but the vehicle continued navigation at reduced speed,

Distunce from Obstacle (1)

e Spocd (Kmnh)

Vehick

Venele Speed Dismce

Fig. 8. Observations for the test case scenarios (a) moving pedestrians
ahead of the ego vehicle - The pedestrian in the point of being detected as
an obstacle and safely avoiding on its trajectory. (b) moving pedestrians
near or the side path of the ego vehicle. Pedestrians were detected but it
continued to navigate as the pedestrians were not obstructing the path (c)
passenger tram approaching the path of the ego vehicle, The vehicle
travelling speed at 8-10kph. It has detected the tram ahead. However,
there was no clear area to move aside so it has stopped instead and waited
the path to be cleared. (d) moving vehicle in-front of the ego vehicle at 10-
14m travelling at 8-10kph. The AV maintained a safe distance and speed
behind the moving vehicle.



maintaining a safe distance. Scenario 3 involved a passenger
tram approaching; the vehicle stopped as no clear area for
manoeuvring was available. In Scenario 4, with a vehicle in
front, the ego-vehicle maintained a safe distance and speed,
following traffic rules. Deviations between planned and actual
trajectories were observed, highlighting the importance of
map updates and detailed navigation data. Alternative map
formats were considered for improved planning. Safety
measures included emergency stop buttons and safety driver
training.

V. CONCLUSIONS

The POC AV system in our demonstration provided our
team several considerations in the initial design and
development. This to address a wide range of driving
scenarios, including challenging environments such as low-
speed zones, crowded areas, and high-density mixed traffic
conditions with unclear lane boundaries. Achieving safe
driving in this context requires safe and robust perception and
planning algorithms that can handle complex and dynamic
situations.

The AV last-mile delivery demonstration was able achieve
the goal of delivering the food meal boxes on its designated
drop offs. The covered distance was 3.5km and the duration is
40-60mins. The AV system was able to follow the ODD. The
KPIs of the delivery system were achieved following the trials
performed. The navigation was able to navigate from pick-up
(collection point) to drop off-points 85% of the time without
human intervention. This translate to 85% of the delivery was
successfully completed on the assessment and evaluation
period. The overall assessment was achieved in terms of the
safe and timely navigation and successful delivery drop-offs
of the food meal boxes at designated points.

The lesson learned on the challenges of the perception and
planning system is still open research. The perception-planner
system we implemented and deployed for the object
recognition and motion planner is to scale with the designed
functionality. The robust perception, navigation, and planning
algorithm with respect to high density of dynamic objects and
crowded environment in the zoo park is more towards the
perception challenge. However, this is also translated to
prediction and decision associated with the mission and
behavior planning. We observed that prior knowledge of the
road information is essential for the planner algorithm. This is
understanding the road features. The lane marking, center
lines, stop lines, crosswalk, and others features that other
mapping tools add layers of information to the road traffic
such as vectors or HD maps. This makes the AV understand
the environment and dependent to make the navigation on the
right track. This annotation of the HD map is part of the
information to support the navigation and decision-making
process in the autonomous driving software stack. The AV
prototype last-mile delivery was able to maintain the target
speed and the right path. Although, the planned path is being
disrupted by the crowded environment and obstacles in the
road traffic. The described scenario on this research is to keep
the AV in the lane. The POC in Mandai zoo provided a more
open opportunity for our ADS to improve on the challenges in
the perception and planning algorithm for complex
environment.
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