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Abstract—Gross Primary Productivity (GPP) is a critical
measure of carbon uptake by terrestrial vegetation, essential for
understanding the global carbon cycle and developing climate
mitigation strategies. This study introduces a novel approach
to estimating annual GPP in Europe and North America us-
ing a deep tabular model that integrates remote sensing data
from Google Earth Engine with the FT-Transformer architec-
ture. We utilized transfer learning to pre-train the model on
extensive MOD17A2H/A3H (MOD17) data and fine-tuned it
with FLUXNET station data, addressing the scarcity of in-situ
measurements. Our results demonstrate that the proposed model
provides more accurate GPP estimates compared to traditional
MOD17 values, reflecting a closer alignment with FLUXNET
observations. This enhanced accuracy highlights the model’s
ability to capture complex ecological and climatic interactions,
offering a promising tool for advancing our understanding of
terrestrial carbon dynamics. The full code repository is available1.

Index Terms—terrestrial carbon sequestration, gross primary
productivity, Google Earth engine, transformer, transfer learning

I. INTRODUCTION

Gross Primary Production (GPP) represents the total car-

bon dioxide captured by land plants over time through the

photosynthetic conversion of into organic compounds [1]. The

terrestrial ecosystem, constituting the most complex carbon

reservoir, stores 25%-30% of anthropogenic emissions [2],

playing a pivotal role in upholding the global carbon cycle

and mitigating the impacts of climate change [3]. Accurate

quantification of GPP is essential for evaluating ecosystem

carbon balance and conducting climate change research. Ad-

ditionally, a thorough understanding of global carbon exchange

facilitates the assessment of the support capacities of terres-

trial ecosystems for achieving the sustainable development of

human society.

Currently, it is impossible to measure GPP directly at a

scale beyond the leaf level. Eddy Covariance (EC) methods

are recognized as a standard method for indirectly estimating

GPP by measuring the exchange between land surface and

atmosphere at a larger scale. However, despite the estab-

lishment of a global flux observation network system, its

sparse distribution across vast land areas still necessitates the

development of simulation methods for estimating GPP at

a larger scale. Among the simulation methods, Light Use

1https://github.com/MiaZhengLS/Estimating-Gross-Primary-Product

Efficiency (LUE) models, which consider physiological and

ecological processes involved in photosynthesis, have been

widely used for estimating GPP at regional and global scales

when combined with remote sensing data. The MODIS team’s

MOD17 global GPP/NPP product is derived from such an

approach. However, LUE models can be limited since they

rely on human understanding to select constant values, model

parameterization schemes, and model structures, which can be

potentially biased and limited within the known domain. In

contrast, machine learning models, which limit the uncertain-

ties associated with traditional empirical process models, have

gained more attention recently to uncover more generalized

relationships between influential factors and the GPP values.

The contributions of this work can be summarized as

follows:

• Enhanced Model Objectivity: Our approach minimizes

bias by using point samples and a transformer-like archi-

tecture, moving away from traditional time-series CNN

methods, and allowing for more objective data interpre-

tation.

• Superior Accuracy in GPP Estimations: The integra-

tion of advanced deep tabular architecture and transfer

learning significantly improves GPP estimates compared

to Gradient Boosted Decision Trees (GBDT) methods

and the MOD17 product. Notably, our fine-tuned FT-

Transformer model, even without pre-training, outper-

forms some GBDT methods, demonstrating the robust-

ness and effectiveness of this architecture.

II. RELATED WORK

Many studies have used machine learning methods to es-

timate GPP. Sarkar et al. (2022) and Hao et al. (2023) both

used random forest (RF), while the former also compared it

with Support Vector Machine (SVM) and EXtreme Gradient

Boosting (XGBoost), stating that RF outperformed the two

as well as the estimations of MOD17 [4] [5]. Lee et al.

(2020) experimented with SVM, RF, artificial neural network

(ANN), and Deep Neural Network (DNN) with data sampled

from Korea and concluded that DNN outperformed the others

and gave a stable result under abnormal climatic conditions

[6]. Wu et al. (2019) used a Convolutional Neural Network

(CNN) on time-series data to estimate global forest GPP and

got a highly consistent result with the ground observation [7].

Many of them utilized remote sensing data from Google Earth
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TABLE I: Input Bands: NDVI: normalized difference vegetation index;
EVI: the enhanced vegetation index; ET: evapotranspiration; PR: precipitation;
LC: landcover; LSTD: land surface temperature (day).

Feature Dataset Availability Frequency Resolution
GPP MOD17A3HGF.061 2001-2022.1 Annual 500m

NDVI MODIS Combined 16-Day NDVI 2000-present 16 days 500m

EVI MOD13A1.061 2000-present 16 days 500m

ET TerraClimate 1958-2022.12 Monthly 5000m

PR TerraClimate 1958-2022.12 Monthly 5000m

LC MCD12Q1.061 2001-2022.1 Annual 500m

LSTD MOD11A1.061 2000.2-present Daily 1000m

TABLE II: Datasets Summary

Stage Dataset Time Amount
Upstream MOD17 training 2015-2020 141623 samples

tuning MOD17 validation 2021 23624 samples

Downstream FLUXNET training (4/5) 2001-2020 996 samples
training FLUXNET validation (1/5)

Test FLUXNET test 2021-2022 160 samples

Engine (GEE) to obtain features due to its easy access [5]

[7]. Some also used MOD17 as a benchmark and conducted a

comparative analysis to prove that their estimations outperform

those of MOD17.

Recently, Transformer, believed to be the state-of-the-art

deep architecture, has shown competitive performance on tab-

ular data problems [8]–[12]. Transformer-like models possess

remarkable feature-capturing capabilities, yet they typically

demand a substantial volume of data for effective training and

satisfactory results. In our study, we harnessed the potential of

Feature Tokenizer + Transformer (FT-Transformer) [13], inte-

grating it with transfer learning to leverage extensive upstream

data and apply the knowledge to a more limited downstream

dataset. We chose MOD17 as the source of upstream data

since it is readily accessible from GEE. Our downstream

data is from FLUXNET stations. This strategy demonstrated

improved prediction results compared to direct training on the

downstream dataset, and it also exhibited superior performance

over traditionally dominant gradient-boosted decision trees

(GBDT) such as XGBoost or CatBoost. Notably, the outcomes

are also more consistent with FLUXNET data compared to that

from MOD17, emphasizing the effectiveness of our chosen

approach.

The data source and methodology are introduced in Section

II. The results and discussion are described in Section III.

Conclusions and future work are demonstrated in Section IV.

III. DATA SOURCE AND METHODOLOGY

A. Data Source

Our study utilizes upstream and downstream data categories,

with input features sourced from Google Earth Engine (GEE)

and target features from FLUXNET stations for downstream

data. Six input features, detailed in Table I, were selected based

on ecological and climatic considerations.

The regions of interest are North America and Europe,

chosen for their comprehensive FLUXNET data coverage of

2001-2022 and the diversity of ecosystem types. Our goal

is to estimate annual GPP, and we harmonized the temporal

Fig. 1: Pre-processing Workflow

Fig. 2: Upstream MOD17 Sample Locations

resolution of input features accordingly, using medians for

each year and annual sums for precipitation.

For effective training of all machine learning models con-

sidered in this study, input features were scaled using scikit-

learn’s RobustScaler based on upstream training data. The

overall workflow is illustrated in Fig. 1.

1) Upstream Datasets: Over 140k training and 23k valida-

tion samples were collected for upstream training of the FT-

Transformer, detailed in Table II. The geographical distribution

of upstream samples is shown in Fig. 2 with different colors

representing different landcover types.

2) Downstream Datasets: The downstream data comprises

1, 156 site-year samples from 142 stations in North America

and 64 stations in Europe, as shown in Table II. The geolo-

cations of these stations are plotted in Fig. 3, with different

colors denoting various landcover types. For comparative anal-

ysis with MOD17, we also sampled MOD17 values aligned

with the site-year information of the test dataset. The unit

of FLUXNET data is g × C/m2, which is different from

kg × C/m2 used by MOD17. So all the downstream target

values are converted to make the unit consistent.

B. Methodology

We implemented the FT-Transformer model, following the

guidelines of the original study [13], and compared its per-

formance with fine-tuned CatBoost, XGBoost, SVR, SGD,

and RF regression models to assess the efficacy of transfer

learning.
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Fig. 3: Downstream FLUXNET Station Locations

Fig. 4: Transformer Block Structure

1) Model Development: FT-Transformer is a deep learning

(DL) model specifically designed for tabular data. It consists of

feature tokenizers, multiple transformer layers, and an output

layer. The numeric feature tokenizer applies a randomized

weight vector and a bias for the numeric input vector. The

categorical feature tokenizer works similarly to the numeric

feature tokenizer except that it uses a category look-up table,

thus the categorical feature number may not be consistent

with the output dimension of the categorical tokenizer. The

transformer layers are a stack of the same structured layers

as shown in Fig. 4. According to [13], the first normalization

in the first Transformer layer should be removed to achieve

better performance.

Initial experiments were conducted using default hyperpa-

rameters, followed by fine-tuning to optimize performance.

2) Transfer Learning Strategy: As shown in [14], FT-

Transformer, with transfer learning strategies, can outperform

GBDT methods when downstream data is limited and there is

a strong correlation between upstream and downstream data.

In our case, MOD17 provides a consistent global estimation

of GPP that makes it possible to utilize massive upstream data

for pre-training. To evaluate the effect of the transfer learning

strategy on our problem, we also trained FT-Transformer

entirely on downstream data for comparison. For pre-trained

models, we experimented with two types of tuning: end-to-end

tuning and output layer tuning.

TABLE III: Quantitative Performance Comparison. FT-Transformer(full):
Pre-trained, fully trained on downstream; FT-Transformer(head): Pre-trained,
only output layer trained on downstream; FT-Transformer(down): Trained
solely on downstream, no upstream data.

Model RMSE R2 Max Error
MOD17 4553.657 0.502 15910.398
CatBoost 3873.608 0.640 13520.283
RF 4415.322 0.532 11570.286
SVR 4613.222 0.489 14607.598
XGBoost 4613.490 0.489 13605.111
SGDR 4624.181 0.486 13526.716

FT-Transformer (head) 4090.135 0.598 12817.128
FT-Transformer (down) 4378.650 0.539 19443.531
FT-Transformer (full) 3760.305 0.660 11849.963

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. General Results

We evaluated the model performance with Root Mean

Squared Error (RMSE), coefficient of determination R2, and

Maximum Error (ME). RMSE measures the average error

between prediction values and actual values. R2 indicates the

level of correlation between the actual values and the predicted

values. ME is the maximum distance among all distances

between predicted values and the corresponding actual values,

which can reflect the extent of errors. The results are listed in

Table III.

Upon analysis of RMSE and R2, we can observe that

end-to-end FT-Transformer and CatBoost gain significantly

better performance than other models, including the bench-

mark MOD17. Notably, CatBoost demonstrates a larger ME,

indicating a greater worst-case error in comparison to end-to-

end FT-Transformer. Besides the two top models, pre-trained

FT-Transformer with tuned output layer, FT-Transformer tuned

solely on downstream data and RF also outperform MOD17

across all three metrics. We can also conclude that transfer

learning and end-to-end downstream tuning help boost the

performance of FT-Transformer by comparing the results of

the three FT-Transformer models.

We also visualized the predicted GPP values, MOD17 GPP

values, and FLUXNET GPP values on a 2D plane to view

the consistency among the three. We presented the results for

the FT-Transformer model in Fig. 5a. Results for other models

are depicted in Figs. 5b to 5h. On the plotted plane, a closer

alignment of data points with the diagonal line indicates higher

accuracy. This visual inspection reveals an improved accuracy

in matching FLUXNET GPP for the FT-Transformer model

when compared to MOD17.

B. Performance for Different Landcover Types

We analyzed the models’ performance for different land-

cover types involved in the test data and visualized the results

in Fig. 6. We can see that the estimated GPP of both FT-

Transformer and CatBoost are well aligned with FLUXNET

GPP in most landcover types. But FT-Transformer predicted

a much higher value for EBF type than the observed value.

This may be explained by the imbalanced landcover types

in the upstream training data and the dominating role of
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(a) FT-Transformer (end-to-end) vs. MOD17 (b) FT-Transformer (down) vs. MOD17

(c) FT-Transformer (head) vs. MOD17 (d) CatBoost vs. MOD17

(e) RF vs. MOD17 (f) SGDR vs. MOD17

(g) SVR vs. MOD17 (h) XGBoost vs. MOD17
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Fig. 6: Performance Comparison based on Landcover Types
ENF: Evergreen Needleleaf Forests; EBF: Evergreen Broadleaf Forests; DBF: Deciduous Broadleaf Forests; MF: Mixed Forests; OS: Open Shrublands; WS: Woody Savannas; SAV:
Savannas; GRA: Grasslands; PW: Permanent Wetlands; CRO: Croplands; UBL: Urban and Built-up Lands; CNVM: Cropland/Natural Vegetation Mosaics

Fig. 7: Distribution of landcover in upstream data

Fig. 8: Feature Importance Analysis

landcover types in estimating GPP values. As displayed in

Fig. 7, the upstream training samples with EBF type are very

limited, which makes it more difficult for FT-Transformer to

learn enough information between this landcover type and the

corresponding GPP values. Besides this, we also visualized the

feature importance for the FT-Transformer model in Fig. 8 and

discovered that landcover type is the most important feature.

This means that less landcover information can significantly

impact the accuracy of GPP estimation.

C. Discussion

This section evaluates the MOD17 GPP methodology along-

side the advantages and drawbacks of the FT-Transformer

model in GPP estimation.
MOD17 computes daily GPP with the equation

GPP = ε×APAR

where ε is the radiation use efficiency coefficient, and APAR

is the absorbed photosynthetically active radiation. The effi-

ciency coefficient ε is derived from vegetation types, daily

minimum temperature (Tmin), and Vapour Pressure Deficit

(VPD). APAR is determined using the equation

APAR = IPAR× FPAR

combining 8-day estimates of the Fraction of Photosynthet-

ically Active Radiation (FPAR) from MOD15 with daily

Incident Photosynthetically Active Radiation (IPAR) from

GMAO/NASA. These calculations are based on specific as-

sumptions, potentially limiting their ability to fully capture

complex environmental dynamics.
The FT-Transformer model, with fewer intrinsic assump-

tions, offers a more nuanced understanding of ecological

data, revealing patterns not readily apparent with traditional

methods. However, it faces its own set of challenges:

• Interpretability: Despite improvements in DNN model

transparency, fully interpreting the relationships between

input factors and target values is still challenging.

• Data Quality and Volume: The model’s performance sig-

nificantly depends on the quality and quantity of upstream

training data, as elaborated in Section IV-B.

• Resource Intensiveness: The FT-Transformer demands

substantial computational resources, which may contra-

dict environmental sustainability goals due to increased

CO2 emissions.

These considerations highlight the FT-Transformer’s poten-

tial in ecological modeling and underscore areas for future

refinement.
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V. CONCLUSION

This study marks a significant advancement in estimat-

ing terrestrial GPP by effectively combining remote sensing

data with deep learning. Our approach, leveraging the FT-

Transformer model and transfer learning, demonstrates su-

perior performance over traditional GBDT methods and the

widely used MOD17 product in predicting annual GPP. The

model’s strength lies in its ability to process complex, multi-

dimensional data, capturing the nuanced interplay between

various ecological and climatic factors influencing GPP. While

our results underscore the potential of deep learning in en-

vironmental modeling, we also acknowledge the challenges

in interpretability and the reliance on extensive training data.

Future work will focus on enhancing data quality, especially

for underrepresented landcover types, and exploring alternative

deep learning architectures for improved efficiency and accu-

racy. Our findings contribute to a more nuanced understanding

of the terrestrial carbon cycle, offering valuable insights for

climate change research and policy-making.
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