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Abstract—Predicting the binding affinity between a T cell
receptor (TCR) and an epitope is essential in cancer im-
munotherapy. The existing predictor epiTCR employs Random
Forest to distinguish between binding and non-binding TCR-
epitopes. However, the feature representation learning capability
of Random Forest is limited, resulting in unsatisfactory prediction
outcomes. Therefore, there is a need to build an improved TCR-
epitope predictor. In this paper, we build a predictor based
on transformers, called TTCR. This model uses two different
tokenizers to convert the TCR and epitope sequences into the
number sequences that can be understood by the network. We
embed the transformers into TTCR encoders, in order to increase
the interpretability of the model. The developed models are
trained and tested based on five public datasets. The experimental
results demonstrate that TTCR is a powerful tool to conduct
TCR-epitope binding affinity prediction.

Index Terms—TCR, epitope, binding affinity, transformer,
tokenizer

I. INTRODUCTION

The adaptive immune system’s core lies in T cells’ ability

to discern foreign entities from host cells. T cells accomplish

this essential function by using their surface protein complex,

known as the T cell receptor (TCR), to bind with foreign pep-

tides that are displayed by major histocompatibility complex

(MHC) molecules on the surface of host cells [1]. Epitopes,

specific regions on peptides, are crucial for TCR binding.

Understanding TCR-epitope binding principles is pivotal for

advancing novel immunotherapy applications [2].

In cancer immunotherapy, with the current pandemic of

SARS-CoV-2, a critical aspect involves evaluating which

TCRs will effectively bind to the epitopes present on neoanti-

gens. This assessment holds significant importance for de-

signing immunotherapy treatments. Additionally, amidst the

ongoing SARS-CoV-2 pandemic, the urgent need for swiftly

screening potential candidate TCRs capable of binding to

foreign peptides produced by pathogens has become evident.

Identifying these candidate TCRs enables the rapid develop-

ment of adaptable treatment approaches for diseases that pose

a public health threat [3].

Established TCR-epitope bindings are documented, yet the

precise biological reasons for their specificity remain elusive.

TCRs can bind to multiple epitopes, and conversely, epitopes

can also bind to multiple TCRs. This complexity expands

the search space significantly, since individual instances could

represent a unique binding or merely one of numerous po-

tential interactions within a pair. Due to the many-to-many

relationship between TCRs and epitopes, conducting manual

tests of candidate TCRs against specific epitopes becomes

impractical. The capability to computationally predict the

binding affinity of TCR-epitope pairs is essential for swiftly

advancing truly personalized immunotherapy.

The emergence of extensive public databases including

TCR sequences specific to epitopes, such as VDJdb [4], [5],

McPAS-TCR [6], and the Immune Epitope Database (IEDB)

[7], has paved the way for computational methodologies to

assess the immunogenicity of given epitope sequences. TBAdb

[8] consists of numerous interactions sourced from Asian pa-

tients, a rarity in other databases, and has not been extensively

utilized to train existing tools. Conversely, 10X [9] primarily

comprises validated non-binding data, only a limited number

of binding interactions within its dataset.

II. RELATED WORKS

A. TCR-epitope binding prediction via epiTCR

The epiTCR method utilizes Random Forest as its founda-

tion to predict TCR-epitope interactions. The epiTCR executes

experiments on a combined dataset collected from 5 public

datasets (IEDB, VDJdb, TBAdb, McPAS-TCR, and 10X) [10].

The inputs of the epiTCR consist of TCR region-3 beta

(CDR3β) [11] sequences and epitope sequences, which are

encoded by the flattened BLOSUM62 [12]. After being trained

on data collected from 5 public TCR-epitope binding datasets,

the epiTCR can predict the binding affinity between the given

TCR and epitope sequences. Compared to other existing tools

(NetTCR [1], Imrex [13], ATM-TCR [2], and pMTnet [3]),

epiTCR achieves superior performance with an area under the

curve (AUC) [14] of 0.98 and higher sensitivity (0.94), while

maintaining comparable prediction specificity (0.9).

III. METHODOLOGY

In this paper, we build a transformer-based model named

TTCR for predicting TCR-epitope binding affinity, as illus-

trated in Fig. 1. This prediction model is structured within a
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(a) Model architecture of TTCR with the tokenizer BLOSUM62. (b) Model architecture of TTCR with the tokenizer CLIP.Tokenize.

Fig. 1: A depiction of the TCR-epitope binding affinity prediction model using the transformer.

Siamese network architecture. The TTCR model takes TCR

and epitope sequences as inputs, which are tokenized and

converted into flattened vectors using specific tokenizers.

These tokenized vectors are then passed through individual

encoders, generating same-size feature vectors. By subtracting

two encoded vectors, we derive a ‘diff’ vector (referenced in

Fig. 1). This ‘diff’ vector is processed through dense layers

to produce the binding affinity, serving as the final output of

our TTCR.

Tokenizer. In natural language processing (NLP) tasks, we

need to use tokenizers to convert natural language from text to

numbers that machines can understand [15], [16]. Tokenization

is an important step in text pre-processing, converting text into

tokens, and using unique tokens to generate vocabularies. The

ID of each token in the vocabulary can be represented as a

number [17]–[19]. In this paper, the tokenizer is to convert

a string into a number sequence, which can be understood

and tackled by TTCR. We utilize two different tokenizers

(BLOSUM62 [12] and CLIP.Tokenize [20]) and evaluate their

contribution to TTCR performance in Section Experiments.

Given a TCR sequence and an epitope sequence, the tok-

enization process can be expressed as:

x1 = Tokenizer(TCR), (1)

x2 = Tokenizer(Epitope), (2)

where x1 and x2 represent the flattened tokens of the input

TCR sequence and the epitope sequence. Tokenizer(·) is the

tokenizer that converts the string into a number sequence.

Encoder. We employ the transformer-based text encoder from

the contrastive language-image pre-training (CLIP) model [20]

as the backbone for our encoders. As the lengths of BLO-

SUM62 tokenized vectors are different, the TCR encoder and

epitope encoder use unshared weights during TTCR training.

When using CLIP.Tokenize as tokenizers, the TCR encoder

and epitope encoder share the network weights during TTCR

training, since the lengths of tokenized vectors are same-size.

Inspired by CLIP, we modified its text encoder as the TCR

encoder and the epitope encoder. The encoder takes x as input

and generates the feature vector h:

h = Encoder(x) ∈ R
C , (3)

where C is the dimension of the feature vector, and it is set

to 8.

As depicted in Fig. 1, this encoder consists of 5 parts,

including a token embedding, a positional embedding layer, a

transformer model, a layer normalization, and a text projection

layer. The process of token embedding is defined as follows:

x′
in = TokenEmbedding(x) ∈ R

L×W , (4)

where TokenEmbedding(·) denotes the token embedding for

the flattened TCR or epitope token. L and W denote the length

of a TCR/epitope token (see Table II) and transformer width

(see Table I), respectively.

To introduce the positional information into the transformer,

we also add learnable parameters c ∈ R
L×W to represent the
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positional embedding. The input xin of the transformer model

is as follows:

xin = c+ x′
in ∈ R

L×W , (5)

Then, the transformer can embed the input into a common

representation space:

xout = Transformer(xin), (6)

A text projection layer consists of learnable parameters

cc ∈ R
W×D, where W and D denote the transformer width

and the embed dimension (see Table I), respectively. This layer

is responsible for mapping the feature map into a smaller

dimension.

We utilize a layer normalization to normalize the embedding

vector of a token, which is defined as follows:

e = LayerNorm(xout), (7)

The normalized token embedding is combined with the text

projection and generates the feature vector h by using the

Hadamard Product:

h = e@cc, (8)

where @ indicates the Hadamard Product.

We use the above method to build the TCR encoder and

the epitope encoder. By feeding the flattened TCR token x1
and the flattened epitope token x2, their respective encoders

can produce the feature vector h1 and h2. The distance diff
between two feature vector are calculated via the subtraction

operation:

diff = |h1 − h2|, (9)

where | · | denotes the absolute value operation.

A dense layer is added to match the dimension of the

binding affinity. We use a 1×2 matrix to represent this binding

affinity, which consists of the probabilities of binding and non-

binding. A high probability of binding means that the TCR and

epitope have a binding relationship and vice versa.

During training, we minimize a binary cross-entropy loss

between the generated prediction P and ground truth y, which

is defined as follows:

L = y log(P ) + (1 − y) log(1− P ), (10)

where y and P are the label and predicted probability of

binding, respectively.

IV. EXPERIMENTS

Datasets. To train our TTCR, we used five public datasets

from work [10], including TBAdb [8], VDJdb [4], [5],

McPAS-TCR [6], IEDB [7], and 10X [9]. Only 10X provides

negative paired data (non-binding TCR-epitope pairs), and

others are positive data (binding TCR-epitope pairs). As sum-

marized in Fig. 2, the experimental dataset consisted of 5649

TBAdb pairs, 29737 VDJdb pairs, 5869 McPAS-TCR pairs,

64986 IEDB pairs, and 106241 10X pairs. This combined

dataset totally comprised 212482 pairs with a 1:1 ratio of

positive and negative pairs.

Fig. 2: The training and testing datasets consist of TCR-

epitope pairs collected from TBAdb, VDJdb, McPAS-TCR,

IEDB, and 10X.

(a) Distribution of TCR length in the dataset.

(b) Distribution of epitope length in the dataset.

Fig. 3: Length frequency analysis for the experimental dataset

by kernel density estimators (KDEs) and histograms.
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TABLE I: Hyper-parameters of our TTCR that cooperates with existing tokenizers in experiments.

Model Tokenizer Embed Dim Transformer Width Transformer Heads Transformer Layers

TTCR+BLOSUM62 BLOSUM62 [12] 8 8 4 1

TTCR+CLIP.Tokenize CLIP.Tokenize [20] 128 128 8 3

TABLE II: Hyper-parameters of tokenization methods in experiments.

Tokenizer Length of TCR Tokens Length of Epitope Tokens Vocabulary Size

BLOSUM62 [12] 380 220 16

CLIP.Tokenize [20] 77 77 49408

TABLE III: Performance comparison of different models using 10-fold cross-validation.

Model Mean Accuracy Mean Precision Mean Sensitivity Mean Specificity Mean F1-Score Mean AUC

epiTCR 0.9027 1.0 0.8053 1.0 0.8922 0.9027

TTCR+BLOSUM62 0.9205 0.9172 0.9688 0.8714 0.9347 0.9201

TTCR+CLIP.Tokenize 0.9892 0.9952 0.9831 0.9953 0.9891 0.9892

Fig. 3a displays the length distribution of TCR sequences,

ranging from 8 to 19. Kernel density estimators (KDEs) [21]

portray the probability density of TCR lengths, showing a

concentration around the length of 12. Additionally, Fig. 3b

shows that the lengths of epitope sequences range between 8

and 11, with the highest probability density observed at length

9. These findings highlight the length diversity of TCR and

epitope sequences in the combined dataset.

Evaluation Metric. To evaluate the prediction performance

of TTCR, we use the standard metrics in the work [10]:

accuracy [22], precision [23], sensitivity [24], specificity [25],

F1-Score [26], and AUC [14]. Accuracy measures the overall

correctness of predictions made by the model. It refers to

the ratio of correctly predicted samples (both true positives

and true negatives) to the total number of samples. Precision

quantifies the accuracy of positive predictions made by the

model. It calculates the ratio of correctly predicted positive

samples to the total predicted positive samples (both true

positives and false positives). Sensitivity, also known as recall,

measures the model’s ability to correctly identify positive

(or true) instances among all actual positives. It’s calculated

as the ratio of true positives to the sum of true positives

and false negatives. Sensitivity assesses how well a model

avoids false negatives. Specificity gauges the model’s ability to

correctly identify negative samples among all actual negatives.

It’s computed as the ratio of true negatives to the sum of true

negatives and false positives. Specificity measures how well

a model avoids false positives. The scale ranges from 0 to

1, where higher values signify superior model performance in

both precision and recall aspects.

Implementation Details. In our training of TTCR, we employ

two distinct tokenization methods, namely BLOSUM62 and

CLIP.Tokenize. The specific parameters used for TTCR and

the tokenization methods in our experiments are outlined in

Tabel I and Tabel II, respectively. To assess its performance,

we select epiTCR as the comparative method. To ensure

fairness in comparison, we choose ten-fold cross-validation

for experimental validation.

(a) ROC plot of prediction performance for epiTCR.

Fig. 4: The performance of epiTCR, TTCR+blosum62, and

TTCR+CLIP.Tokenize for predicting TCR-epitope binding

affinity on a subdataset.

Comparisons. Table III shows the performance compari-

son of different models that are evaluated by the ten-fold

cross-validation method. Our TTCR method outperforms the

epiTCR, especially in terms of mean accuracy, mean sensitiv-

ity, F1-score, and AUC. Moreover, when comparing the contri-

bution of two different tokenizers, TTCR with CLIP.Tokenize

performance better than TTCR with BLOSUM62. The TTCR

with a high mean accuracy, so that the TTCR outperforms

the epiTCR in terms of identifying binding or non-binding

relationships. The mean precision of the epiTCR is high,

but its sensitivity is lower than our proposed TTCR. These
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results demonstrate that the epiTCR is prone to predict the

relationship between the given TCR and the epitope as bind-

ing. However, in practical applications, there is a greater need

for a predictor that can identify the non-binding relationships

between TCRs and epitopes. The sensitivity and specificity of

our proposed TTCR are higher than the epiTCR, so the TTCR

can successfully identify a binding TCR-epitope as a positive

pair, and identify a non-binding TCR-epitope as a negative

pair.

Fig. 4 depicts the performance of TCR-epitope binding

prediction using epiTCR, TTCR with BLOSUM6, and TTCR

with CLIP.Tokenize on a testing subdataset. Notably, all

three models exhibit superior performance compared to ran-

dom guessing. Based on the comparison results, the pro-

posed TTCR model shows good prediction with a mean

AUC>0.98, whereas epiTCR achieves a mean AUC=0.9049.

We further evaluate our TTCR with two distinct tokenizers,

including BLOSUM62 and CLIP.Tokenize, and TTCR with

CLIP.Tokenize performs better than BLOSUM62 in our test-

ing dataset. This comparison emphasizes that TTCR with

CLIP.Tokenize demonstrates the most promising outcomes,

displaying the fewest occurrences of False Positives and False

Negatives. That means CLIP.Tokenize is also a potential tool

for converting strings into protein language which can be

understood by the deep learning method.

V. CONCLUSION

This paper introduces the TTCR model, designed specif-

ically for predicting the binding affinity between TCRs and

epitopes. Leveraging the transformer framework derived from

CLIP as its foundational encoder, this model encapsulates

biological information from input sequences into uniform-

sized feature vectors. Tokenizers are employed to convert TCR

and epitope sequences from textual strings into numerical

sequences, facilitating comprehension by the model. Through

empirical experimentation and evaluation, the findings sub-

stantiate the efficacy of TTCR as a dependable tool for

predicting the binding affinity between TCRs and epitopes.

Additionally, devising strategies to handle the long-tail distri-

bution of epitope-associated TCRs remains an open problem,

which is an interesting future work.
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