
Unsupervised Latent Regression through
Information Maximization - Contrastive Regularized

GAN

Vicky Sintunata, Siying Liu, Dinh Nguyen Van, Zhao Yong Lim,
Ryan Lee Zhikuan, Yue Wang, Jack Ho Jun Feng, Karianto Leman

Institute for Infocomm Research (I2R), A*STAR, Singapore
{Vicky Sintunata, liusy1, nguyen van dinh, lim zhao yong, ryan lee, wang yue, jack ho, karianto}@i2r.a-star.edu.sg

Abstract—Most of labelled image public datasets are discrete
in nature, e.g. cat vs dog, human, car, etc. With the growing
complexity of tasks, fine-grained label data is needed. Fine-
grained labels are costly because there is a need for experts
to label them. Generative Adversarial Network (GAN) has been
gaining a lot of attentions due to its ability to not only generate
realistic images but also to disentangle the attributes of the
images. Unfortunately, GAN’s disentanglement methods usually
lack the ability to quantify such attributes. The objective of this
work is to quantify the attributes of the target (object/image)
based on the disentangled properties without supervision. In
order to get the (disentangled) attributes, we leverage GAN with
information maximization and contrastive regularizer. Regression
is done by adding additional layer to the contrastive networks
of the model. The regression quality of the proposed method is
quantified by order quality measured using normalized Kendall’s
Tau. Furthermore, an application in denoising image is also
presented.

Index Terms—Generative Adversarial Network, Regression,
Disentanglement, Gaussian White Noise Denoising

I. INTRODUCTION

It is no surprise that training deep learning model requires

massive amount of data. Through the years, we have seen

amazing performances of deep models by utilizing these data.

Starting to just recognizing hand-written digit of MNIST

[1], to object detection [2], [3], to object segmentation [4]

and many more advance tasks. Producing these data has it’s

own challenges, mainly with the labelling and collecting the

target data. Moreover, with the increasing complexity of the

tasks, finer-grained attribute annotations are required to feed

into a deep model. These fine-grained and granular level of

annotations most often require an advance level of expertise

and the process can be costly.

In the past years, generative adversarial networks (GANs)

have gained a lot of attentions particularly of its ability to

generate realistic images. GAN consist of a generator and a

discriminator model in min-max game. The main goal of GAN

is to produce an output (image) as realistically as possible

resembling the dataset it trained on. Usually using a gaussian

noise as inputs, the generator is tasked to fool the discriminator

to assess the generator’s output as real. On the other hands,

the discriminator is tasked to differentiate whether the inputs

it is given are real or fake.

Another interesting part of GAN is its ability to disentangle

the attributes of the images. Disentangling attributes of im-

ages is important factor here, since it can then be used for

finer-grained detection or classification. The disentanglement

property of GANs make it easier for user to control the output

of the image with certain attributes and hence many of the

applications of GAN is for image editing [5]–[7]. The ability

to edit images will certainly make finergrained data generation

easier. However, the manual labor involved in this task remains

demanding. Note also that the conventional approach of image

editing using GAN is to first convert the target image into a

latent vectors, such that if it is given to the generator, it will

generate the same image as the target image. In this case,

the discriminator is practically discarded after the initial GAN

training.

The objective of this work is to quantify the attributes of an

image based on the disentangled properties without any super-

vision. We train a GAN with additional layer of neural network

so it allows discriminator to jointly learn to distinguish real

or fake images and to quantify specific attributes changes.

Our approach is inspired by the capabilities of the work done

in [8]. Particularly the abilities of the network to identify

which latent factors the pair inputs (images) correspond to

each other. Originally, it is used to help with more diverse

generation of images through contrastive regularizer, but we

notice that it has potential to be used to as a regressor. In

order to quantify our methods, we devise experiments based

on a ranking/ordering task. The idea is if we can re-order

the inputs according to a specific ground truth attributes, then

we can assess how well our model can measure the value of

that attribute correctly. During inference, both the generator

and discriminator are used. The generator is used to generate

image with ”base” attributes value that will be compared with

the target image’s attributes value. To validate our findings,

a normalized kendall’s tau distance is used on the ordering

results. From the experiments done, we show that the proposed

method can achieve almost perfect score for the ordering task

in each of the attributes of interest. Furthermore, an application

of the proposed method in denoising is also presented.

1469

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00264

Fig. 1. Proposed Architecture. Building upon InfoGAN-CR [8], we add
additional regression layer that quantify the similarity (or differences) of the
input images attributes

II. RELATED WORK

Some previous works have also utilized the potential of

discriminator as a classifier [9], [10]. In Auxiliary Classifier

GAN (AC-GAN [9]), the discriminator is tasked to assess the

distribution of the input (whether it comes from real image or

generated/fake image) and to give label associated with it. The

generator then take inputs a random noise vector along with

the class label. ADC-GAN [10] improves the capabilities of

AC-GAN especially in intra-class diversity of the generation

by adding a discriminative classifier. Note that both of these

methods require labelled datasets while our approach is done

in unsupervised manner.

GAN’s latent space disentanglement has been garnering

interests for the past years. Some of the past research specifi-

cially try to disentangle a specified attribute of the inputs, e.g.

pose and 3D representations [11], face representation [12].

Others have more general settings [8], [13], [14]. There are

two approaches in disentangling the attributes in GAN. The

first approach is through a manipulation in the latent space

directly, i.e., in the layers of the GAN [5], [15], [16]. The

second approach is to add control vectors to the input gener-

ator, i.e., the inputs to generator is random noise plus some

additional vectors (usually continuous to represent continuous

latent attributes) [8], [13], [17]. In [14], the authors proposed

a regularization loss such that the generative model has a

diagonal hessian matrix with respect to its input. By having a

more diagonal hessian matrix, the latent space are expected

to have more disentanglement. InfoGAN [8], [13] on the

other hand, promotes disentanglement by maximizing mutual

information between the latent variables. We will review a bit

more on InfoGAN and subsequently InfoGAN CR in section

III.

At the core, [18] is probably the most related to our work.

In [18], the authors proposed of using a trained model from

StyleGAN2 [15] combined with an inversion model from

e4e [19]. The inversion model is used to convert the inputs

(image space) to the latent space of StyleGAN and then the

resulting latent vectors are compared between the images in

order to get a linear regressor. Different with their approach,

our method is end-to-end. While in [18] some of the results

are measured subjectively, in our works we propose a more

objective quantification and results.

III. METHOD

A. InfoGAN and InfoGAN-CR

We will first briefly review InfoGAN [13] and InfoGAN-CR

[8]. As like many other GANs, InfoGAN tries to optimize the

competing models between the generator G and the discrim-

inator D through the adversarial loss which is often using a

binary cross entropy loss. x and x’ represents the real image

and generated image respectively.

min
G

max
D

Ladv(D,G) =min
G

max
D

E[log(D(x)]+

E[log(1−D(x′))]
(1)

On top of this, InfoGAN tries to achieve disentanglement by

incorporating the information maximization through a mutual

information regularizer I.

min
G

max
D

Ladv(D,G)− λI(c;G(c, z)) (2)

c ∈ R
k is the disentangled code vector and the sample

G(c,z) where z ∈ R
d is the latent code usually sampled

from Gaussian distribution. The authors in [8] argue that

the factorized Gaussian with identity covariance as used in

InfoGAN is necessary to keep the loss bounded, but it creates

an implicit bias and therefore, reduce the disentanglement

capability.

In order to reduce the implicit bias effect on the disentan-

glement, the authors in [8] then proposed to add contrastive

regularizer based on the cross entropy, denoted as (〈, 〉).
Lc(G,H) = ER∼U([k]),(x,x′)∼Q(R) [〈R, logH(x, x′)〉] (3)

Q(R) and R represent the joint distribution of the paired

images and random index one-hot encoding. The basic idea

is that disentanglement is measured through the changes in

latent space traversal. Measuring the changes requires the

discriminator to make decision based on multiple samples with

differing latent codes. To this end, additional discriminator H
is created which sole purpose is to determine which latent

code c the coupled input (x, x′) is (are) sharing. Note that

while discriminator D takes input real and (artificial) images

generated by the generator G, discriminator H only takes

input from the generator. In other words, given two or several

images generated by generator G, discriminator H is tasked to

determine which disentangled code vector c is responsible for

the changes in the input (images).

B. GAN as Regression

Building on the success of InfoGAN-CR, we propose an

additional layer that utilizes the capability of the discriminator

H to not only distinguish which latent code c is similar

(or different), but also to quantify how much the similarity

(or differences) are. In order to leverage discriminator H’s

1470

capability, we make a branching point to an encoder from

discriminator H as shown in Fig. 1. The newly added encoder

works as the regressor with a (k × N)- dimensional output

vector where N is the batch size.

Recall that x = G(z, c) is the output of the generator with

z and c as inputs. Similarly, x′ = G(z, c′) is the output of

the generator with the same z vector and (different) c′ latent

code vector. There are two alternatives on how to train the

discriminator H based on the difference between c and c′. The

first one, which is also used in [8], is to share one (randomly

picked) latent code cj and then task the discriminator to

correctly identify j. The second one is to fix all of the other

latent codes and randomly pick one latent code (cj) to be

different and similarly, tasking discriminator H to correctly

identify j.

The objective in this work is to measure the difference of

the latent code and therefore, the latter option is used. More

precisely, let c be sampled from gaussian distribution and c′

is the copy of c, then we randomly select j-th latent code

such that c′j = 0. By opting for this approach, it will make

training the discriminator easier. Then, the regressor can be

trained with the Mean Squared Error as its loss (4). Note that

cij denotes j-th latent code of i-th batch (similary for the c′

part). Combining (4) with (2), the total loss during training

can then be written as in (5).

Lreg = 1

N × k

N∑
i=0

k∑
j=0

(cij − c′ij)
2 (4)

min
G,HCR,Hreg

max
D

Ladv(D,G)

− λInfoI(c;G(c, z))

− λCRLc(G,HCR)

− λregLreg(G,Hreg)

(5)

IV. EXPERIMENT

In all of our experiments, we are utilizing two trained

models. The first one is the trained generator G to generate the

base image, i.e., the image generated with all of its latent codes

∀cj = 0, for comparison. The second one, the discriminator

H which will take the base image and the target image from

the dataset as inputs.

In order to quantify the result of our method, an ordering

task is utilized. Given several images sampled (and shuffled)

from the same domain, a good regressor will be able to re-

order the said images according to its ground-truth features.

For example, the target feature is people with long hair the

regressor should be able to re-order the collection of images

from people with short hair gradually to long hair. Unfortu-

nately, such datasets with its ground truth values, to the best

of our knowledge doesn’t exist. So, several approaches like

in [18] used a survey-based method to quantify it’s proposal,

which is tend to be subjective and prone to bias. Here, we

are using a more reliable method to quantify our approach

although most of them are synthetically generated images.

We run the experiments in several datasets: dSprites [20]

and chair [21]. All of the experiments are using the same

architecture described in Table I, trained in Pytorch. Unless

otherwise specified, in general the input latent code to the

generator is set to z = 256. Adam optimizer is used for all

the models with learning rate for G = 0.001, D = 0.0002,

and H = 0.0002. All using the beta parameter set up to (0.5,

0.999). As a warming up, the first epoch of the training step

exclude discriminator H.

A. Ordering Measurement

Let σ1(i) and σ2(i) be the rankings of i-th element in

the list σ1 and σ2 and let’s assume that σ1 is the ground

truth ordering of the data, obtained from the labeled data.

For example in the chair dataset, the ground truth ordering

is based on the value of the yaws and pitch. If there are

three chairs (A, B, C) with yaws values 30, 60,45 respectively,

then the order of the ground truth is (A, C, B). In practice,

it is dependent on whether ascending or descending order

is preferred. The quality of the ordering results are assessed

using the normalized Kendall’s Tau distance [30] defined in

(6), where d is the Kendall’s tau distance which measures the

total number of discordant pairs in the lists.

K(σ1, σ2) =
2|d|

n ∗ (n− 1)
(6)

d = {(i, j) ∈ S × S|i < j ∧ (

σ1(i) < σ1(j)∧
σ2(i) > σ2(j)∨
σ1(i) > σ1(j) ∧ σ2(i) < σ2(j))}

(7)

d =

{
d for d >= 0.5

1.− d for d < 0.5
(8)

The normalized Kendall’s Tau distance has value ranging

from 0 to 1, where 0 means a perfect match (of ordering)

between the list and 1 is the total opposite ordering of the

lists. Note that in our case, 1 can be regarded to have the

same value as 0 , i.e., a good value to have, because this means

the discriminator managed to distinguish and order the level

of the latent codes perfectly, only in the opposite direction.

In summary, the ideal value of the normalized Kendall’s Tau

distance is approaching either 0 or 1. In general, all values

reported are normalized to 1 as the best result, i.e., if a

normalized Kendall’s Tau distance value is less than 0.5, then

it will be calculated using Equation 8, unless otherwise stated.

B. dSprites Dataset

The dSprites Dataset consists of 737,280 images of gener-

ated sprites with 6 independent latent factors, i.e., color, shape,

scale, orientation, x and y position. Although the color itself

is set up to only one color (white), the rest of the latent factors

has varying values. There are 3 shapes (square, ellipse, heart),

6 scales (linearly spaced in [0.5, 1]), 40 orientations ranging

from [0, 2π], 32 x positions in [0, 1], and 32 y positions in

[0, 1].

1471

TABLE I
DETAILED OF THE ARCHITECTURE USED FOR EXPERIMENTS. FOR THE CONVOLUTION PART SHOWS THE KERNEL SIZE (n× n) FOLLOWED BY (OUTPUT

SIZE, NORMALIZATION METHOD, ACTIVATION). BN: BATCH NORMALIZATION, SN: SPECTRAL NORMALIZATION, I: IDENTITY FUNCTION

Generator G Discriminator D Discriminator H
Input (c, 256) Input (64,64,3) Input(64,64,6)

FC (512, ReLU) 4× 4Conv.1 (64, SN, lReLU) 4× 4Conv.1 (64, lReLU)
FC (4 ×4× 64, ReLU) 4× 4Conv.2 (128, SN, lReLU) 4× 4Conv.2 (128, BN, lReLU)

4× 4 UpConv.1 (256, BN, lReLU) 4× 4Conv.3 (256, SN, lReLU) 4× 4Conv.3(256, BN, lReLU)
4× 4 UpConv.2 (128, BN, lReLU) 4× 4Conv.4 (256, SN, lReLU) 4× 4Conv.4(256, BN, lReLU)
4× 4 UpConv.3 (64, BN, lReLU) FC (512, SN, lReLU) FC(512)

4× 4 UpConv.4 (3, tanh) Branch 1: DGAN FC(1, sigmoid) Branch 1: HCR FC(c, I)
Branch 2: DInfo FC(2 ×c, SN, [sigmoid, I]) Branch 2: HREG FC(c, tanh)

Fig. 2. Sample of the generated images learned from dSprites dataset with
varying each latent code c value from [-1, 1]

During training, the parameters are set as follow: 100

epochs, batch size = 64, c = 10, λCR = 5, λInfo = 0.2, and

λreg = 20. Fig. 2 shows the generated images learned from

the dataset. Highlighted on with the red boxes are the latent

of interest that will be used for the quantitative experiment.

Orientation, scale, y position and x position will be measured

with latent code c1, c3, c5, and c7 respectively.

For the quantitative experiment, we tested our model with

each latent factors (excluding the color latent factor) for each

shapes separately. Note that for most of the experiments,

first we will randomly select and fix the parameters of the

attributes. For example, in the scale experiment, we will

randomly select one parameter for each of other attributes (ori-

entation, x-y positions) and fix them, while the scale parameter

will be used in full, i.e., all 6 scales. The exception is for

the orientation experiment where only the first 10 orientations

(0 to π/2) will be used for simplicity. All experiments are

repeated for 1000 times and the results can be can be seen in

Table II. The summary based on the observation from Fig. 2

is presented in Table III.

C. Chair Dataset

The 3D Chair dataset consists of 86,366 images from

1,393 types of rendered 3D chairs with 62 different viewing

orientation (31 yaws (Θ): from 0 to 348 degrees, 2 pitch (Φ)

values: 20 and 30 degrees). with the total of 86,366 rendered

Fig. 3. Sample of generated image of learned 3D chair data with varying
each latent code c value ranging from [-1, 1]. Latent code c1 will be used for
quantitative experiment.

Fig. 4. Sample ordering result of chair data. The first row is ground truth,
the second row is ordering result based on latent code c1. The red transparent
boxes is the wrong order and its corresponding ground truth position. The
last column is the normalized Kendall’s Tau distance value (7)

images. All images are rendered with white background.

During training the parameters are set as follow: 150 epochs,

batch size = 128, c = 5, λCR = 1, λInfo = 0.1, and

λreg = 10.

The result of the training can be seen in Fig. 3. As shown,

the first latent code has learned to assess the rotation attribute

from the dataset, hence it will be used for the quantitative

experiment.

For quantitative evaluation, the dataset is divided into 4 sub-

categories. See Table IV for more details. For completeness

sake, the rest of the normalized Kendall’s Tau distance values

from other latent codes are also reported. Visualization of the

result can be seen in Fig. 4.

1472

TABLE II
AVERAGE NORMALIZED KENDALL’S TAU DISTANCE VALUES FOR EACH LATENT CODE c. BOLD FONT INDICATES THE OBSERVED LATENT CODE BASED

ON FIG.2, UNDERLINE INDICATES THE BEST VALUE

Type
Ave.Normal Kendall’s Tau

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Orientation (Box) 0.692 0.639 0.684 0.644 0.651 0.656 0.661 0.657 0.662 0.688
Orientation (Ellipse) 0.994 0.892 0.8636 0.75 0.903 0.754 0.733 0.877 0.724 0.724
Orientation (Heart) 0.743 0.75 0.816 0.752 0.811 0.75 0.73 0.788 0.756 0.715

Position X 0.777 0.716 0.614 0.702 0.839 0.657 0.992 0.715 0.635 0.653
Position Y 0.788 0.746 0.571 0.714 0.937 0.717 0.815 0.698 0.689 0.644

Scale 0.89 0.838 0.978 0.821 0.969 0.808 0.957 0.875 0.86 0.823

TABLE III
AVERAGE NORMALIZED KENDALL’S TAU VALUE FOR DSPRITES

EXPERIMENTS BASED ON THE OBSERVATION IN FIG. 2

Type Ave.Normal Kendall’s Tau

Orientation (Box) 0.6924
Orientation (Ellipse) 0.9944
Orientation (Heart) 0.743

Position X 0.992
Position Y 0.937

Scale 0.978
Mean of Average 0.889

TABLE IV
AVERAGE NORMALIZED KENDALL’S TAU VALUE FOR 3D CHAIR

EXPERIMENTS BASED ON THE OBSERVATION IN FIG. 3

Range
Ave.Normal Kendall’s Tau

c1 c2 c3 c4 c5

Θ : 0 - 180; Φ : 20 0.9006 0.6648 0.5549 0.6445 0.7167
Θ : 180 - 360; Φ : 20 0.9107 0.2509 0.5416 0.6135 0.6773
Θ : 0 - 180; Φ : 30 0.9103 0.625 0.4653 0.6261 0.3565
Θ : 180 - 360; Φ : 30 0.9385 0.7786 0.5344 0.6183 0.7

D. Gaussian White Noise Image Denoising

Here, we are applying the proposed method to solve denois-

ing problem, particularly in gaussian white noise denoising.

There are several datasets used for training i.e., DIV2K

[26], Flickr2K, BSD500 [27], and WED [28]. We adopt the

implementation of BM3D [29] for the denoising algorithm.

BM3D requires sigma (level of white noise) value as input,

which can be estimated from the proposed method, particularly

in the output of H. In order to map from the discriminator H
output to the actual sigma values, we train a simple linear

regression with 500 labelled data (σ ∈ {15, 25, 50}) from the

training dataset. The test set is taken from Set12 [24], (C)BSD

[23], and Kodak [25] datasets.

There are some adjustment made during the training phase.

Firstly the parameters are set as follow: 300 epochs, batch

size = 64, z = 512, c = 5, λCR = 0.5, λInfo = 0.2,

and λreg = 10. Secondly, instead of generating the corrupted

images (noise free image + gaussian white noise with certain

level of noise) directly, the generator is tasked to generate only

the noise component. Hence, the last adjustment is the input

to discriminator H. Instead of only sending the generator’s

output, we combine it with real (noise-free) images. Fig.5

visualize the adjustment made.

The result of the denoising algorithm is quantified by the

TABLE V
QUANTITATIVE COMPARISON IN TERMS OF PSNR (DB) OF THE DENOISED

IMAGES

Noise Level Dataset Ours N2Score (Known) N2Score(Unknown)

σ = 25

Set12 32.267 30.13 30.08
Kodak 31.234 31.89 31.78

CBSD68 30.208 30.85 30.78
BSD68 30.666 29.12 28.95

σ = 50

Set12 28.236 27.16 26.65
Kodak 27.175 28.83 28.13

CBSD68 25.973 27.75 27.32
BSD68 26.383 26.21 25.81

PSNR value which can be seen in Table V. We compare

the results with another method proposed in N2Score [22].

There are two values taken from [22] namely the known and

unknown parameters (i.e., known sigma values). Note that for

fair comparison, we compare the results here only with the

unknown parameters value, while the known parameters value

is shown only for completeness sake.

V. DISCUSSION & LIMITATIONS

We have presented our work on unsupervised GAN re-

gression by building upon information maximization and

contrastive regularizer GAN model. We are also proposing

a way of a more objective assessment of attribute regression

through the usage of normalized Kendall’s Tau distance value.

As seen by the results, the proposed method can achieve high

ordering accuracy as measured by the normalized Kendall’s

Tau distance. Interesting to note in the result shown in Table

II, that the model learn particularly well for the attributes

like position and scale and to some extent the orientation

(ellipse). Unfortunately, the orientation regressor doesn’t seem

to be quite accurate for other ”entities” like the heart and box

shaped object. Although, the result in Table II suggests that the

latent code is still entangled. For example, the average score

for the heart orientation has highest value in latent code c3
which is more prominent in the scale attribute. Interestingly,

apart from the other ”reserved” latent codes, the highest score

for heart orientation lies in c8, although looking back at the

visualization in Fig. 2 shows that there is no perceivable

differences when manually changing the latent code values.

Another possible reason is precisely that it is a different

entity, hence the orientation base or origin is different. This

is supported by the result in the 3D chair dataset where the

model can learn orientation well.

1473

Fig. 5. Adjustment to the training for denoising experiment.

Fig. 6. Losses plot during denoising training. Note that the first jump in the
generator loss is due to the warming up of the generator

We have also presented one of possible application of the

proposed method through image denoising experiment. Fig. 6

shows the losses plot during training which shows the stability

of the proposed method. Also, it performs comparably well

with deep learning based method [22], especially in lower

noise level. While here we only presented one noise type,

we are looking to incorporate multiple noise types and more

potential uses of the proposed method for our future work.

REFERENCES

[1] Y. LeCun, C. Cortes, and C. Burges, ”Mnist hand-written digit database,”
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol.2,
2010.

[2] A. Krizhevsky, ”Learning multiple layers of features from tiny images,”
tech. rep., 2009.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ”Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pp.248-255, 2009.

[4] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D Ramanan, P. Dollár, and C. L. Zitnick, ”Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014.

[5] Y. Shen, J. Gu, X. Tang, and B. Zhou, ”Interpreting the latent space of
gans for semantic face editing,” in CVPR, 2020.

[6] Y. Shen and B. Zhou, ”Closed-form factorization of latent semantics in
gans,” in CVPR, 2021.

[7] H. Ling, K. Kreis, D. Li, S. W. Kim, A. Torralba, and S. Fidler, ”Ed-
itgan: HIgh-precision semantic image editing,” in Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[8] Z. Lin, K. K. Thekumparampil, G. Fanti, and S. Oh, ”Infogan-cr
and model centrality: Self-supervised model training and selection for

disentangling gans,” in ICML’20: Proceedings of the 27th International
Conference on Machine Learning, pp.6127-6139, 2020.

[9] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier gans,” in International Conference on Machine Learn-
ing, 2016.

[10] L. Hou, Q. Cao, H. Shen, S. Pan, X. Li, and X. Cheng, “Conditional
GANs with auxiliary discriminative classifier,” in Proceedings of the
39th International Conference on Machine Learning, pp.8888-8902,
PMLR, 2022.

[11] T. Nguyen-Phuoc, C. Li, L. Theis, C. Richardt, and Y.-L. Yang, “Holo-
gan: Unsupervised learning of 3d representations from natural images,”
in The IEEE International Conference on Computer Vision (ICCV),
2019.

[12] L. Tran, X. Yin, and X. Liu, “Disentangled representation learning
gan for pose-invariant face recognition,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1283–1292,
2017.

[13] X. Chen, Y. Duan, I. S. Rein Houthooft, John Schulman, and P.
Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” in In Advances in Neural
Information Processing Systems, pp. 2172–2180, 2016.

[14] W. Peebles, J. Peebles, J.-Y. Zhu, A. A. Efros, and A. Torralba, “The
hessian penalty: A weak prior for unsupervised disentanglement,” in
Proceedings of European Conference on Computer Vision (ECCV),
2020.

[15] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” IEEE Transactions on Pattern Analysis
& Machine Intelligence, vol. 43, pp. 4217–4228, 2021.

[16] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “An-
alyzing and improving the image quality of StyleGAN,” in Proc.CVPR,
2020.

[17] B. Liu, Y. Zhu, Z. Fu, G. de Melo, and A. Elgammal, “Oogan:
Disentangling gan with one-hot sampling and orthogonal regularization,”
ArXiv, vol. abs/1905.10836, 2019.

[18] Y. Nitzan, R. Gal, O. Brenner, and D. Cohen-Or, “Large: Latent-based
regression through gan semantics,” in 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 19217–19227,
2022.

[19] O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, and D. Cohen-Or, “Designing
an encoder for stylegan image manipulation,” ACM Transactions on
Graphics (TOG), vol. 40, pp. 1 – 14, 2021.

[20] L. Matthey, I. Higgins, D. Hassabis, and A. Lerch-
ner, “dsprites: Disentanglement testing sprites dataset.”
https://github.com/deepmind/dsprites-dataset/, 2017.

[21] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic, “Seeing 3d
chairs: exemplar part-based 2d-3d alignment using a large dataset of cad
models,” in CVPR, 2014.

[22] K. Kim and J. C. Ye, ”Noise2Score: Tweedie’s approach to self-
supervised image denoising without clean images,” in NeurIPS, 2021.

[23] D. Martin, C. Fowlkes, D. Tal, and J. Malik, ”A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics, ” in ICCV, 2001

[24] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ”Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising’, TIP, 2017.

[25] R. Franzen, ”Kodak lossless true color image suite.
http://r0k.us/graphics/kodak/, 1999.

[26] E. Agustsson and R. Timotfte, ”NTIRE 2017 challenge on single image
super-resolution: Dataset and study,” in CVPR Workshops, 2017.

[27] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, ”Contour detection
and hierarchical image segmentation, ” IEEE Trans. Pattern Analysis &
Machine Intelligence, 2011.

[28] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang,
”Waterloo exploration database: New challenges for image quality
assessment models,”, TIP, 2016.

[29] Y. Mäkinen, L. Azzari and A. Foi, ”Collaborative Filtering of Correlated
Noise: Exact Transform-Domain Variance for Improved Shrinkage and
Patch Matching,” in IEEE Trans. Image Processing, vol.29, pp.8339-
8354, 2020.

[30] V. A. Cicirello, “Kendall tau sequence distance: Extending kendall tau
from ranks to sequences,” EAI Endorsed Transactions on Industrial
Networks and Intelligent Systems, vol. 7, no. 23, 2020.

1474

