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Abstract—This study delves into the dynamics between 
diverse learning behaviors among K-12 students and their 
learning gains using a dataset of 508 students learning three 
math skills in ASSISTments. Employing K-means clustering 
based on students’ initial and final skill mastery alongside their 
engagement level, three distinct clusters emerged for each skill, 
revealing varying degrees of learning from ASSISTments. By 
analyzing decision tree classification models for each skill using 
affective labels such as boredom and frustration, we hypothesize 
that students within the same cluster of a skill may exhibit 
heterogeneous learning patterns that affect their subsequent 
learning of new skills. Further exploration demonstrates that 
students who transit between clusters when learning new skills 
differ significantly in their initial and final mastery of previously 
learned skills and their affective labels associated with those 
skills. Regression analysis underscores that students’ initial and 
final mastery of antecedent skills have some influence on their 
subsequent mastery of new skills. Unraveling the intricate 
relationship between student learning behaviors and the 
effectiveness of ASSISTments offers valuable insights into 
tailoring AI-enhanced educational tools, not only for learning 
the current skill but also for preparing for the future learning of 
new skills. 

Keywords—Intelligent Tutoring Systems, K-12 Math 
Learning, Affect, Student Profiling 

I. INTRODUCTION

Intelligent Tutoring System (ITS) is one of the most 
significant research streams in Artificial Intelligence for 
Education (AIED) that delivers personalized learning. While 
some meta-analyses [1, 2] have shown that ITSs support 
learning gains, the findings are not consistent.  For example, 
Steenbergen-Hu and Cooper [3], who performed the only 
meta-analysis focusing on the effectiveness of ITS for K-12 
math learning, found that ITSs had little effect.  

Many empirical studies focused on evaluating the 
effectiveness of ITSs, either as off-the-shelf systems or with 
some research-based enhancements. However, few studies 
examined the dynamics between students’ diverse learning 
behaviors and their varied learning gains to inform the 
understanding of learning in ITSs. A noteworthy study 
conducted by Muldner, et al. [4] examined students’ gaming 
the system and correlated this learning behavior to explain 
students’ gaps in learning gains.  While such an exploration 
contributes valuable insights into student behaviors in ITS, it 
is vital to recognize the limitations of profiling students based 
on their behavior of gaming the system singularly. Thus, a 
more comprehensive investigation is necessary to uncover 
how diverse learning behaviors relate to learning gains. 

This study delves into examining the dynamics of diverse 
learning behaviors among students and the differential 
learning gains, in terms of learning both the current and 
subsequent skills. Findings could contribute to the 
understanding of personalized learning in ITS and have 
implications for the design of ITS to adapt for the needs of 
different profiles of students. Furthermore, learning is not only 
cognitive, but also social and emotional [5]. Our study also 
aims to examine students’ affective states when learning in 
ITS to better understand and optimize learning. 

II. METHOD

A. Dataset
We used the ASSISTments Longitudinal Data Mining

Competition 2017 Dataset [6], consisting of data collected 
from the ASSISTments ITS between 2004-2006. Key 
variables used in our analysis are Ln, indicating the system's 
knowledge estimate of a student at each time step, as well as 
confidence scores for the student affect prediction labels of 
boredom, concentration, confusion, frustration, off-task 
behavior, and gaming (the system) at each time step. A more 
comprehensive description of the method used by 
ASSISTments to develop the affect and engagement labels 
can be found in Pardos et al. [7]. 
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The ASSISTments dataset was chosen as it is open access 
and contains data on epistemic emotions [8] such as boredom 
and frustration, which allows us to examine students’ 
emotional engagement in learning.  

B. Data Preparation 
We sought to understand students' learning for the skills in 

whole number division, fraction multiplication, and fraction 
division. Hence, we focused on a smaller sample of the 
ASSISTments dataset containing 508 students who had 
recorded learning events in all three skills. These three skills 
were chosen for this study as they are conceptually connected. 
For example, fraction division is considered analogous to 
whole number division [9], and students often regard division 
as opposite to multiplication [10].  Examining these skills 
helps us understand the extent to which learning of antecedent 
skills helps students learn the later skills [11].  

Data were aggregated for each student within each skill, 
yielding the following variables for subsequent analysis: 

 Learning_Events – the number of learning events 
recorded for a given student within each skill.  

 Initial_Ln – the mean of Ln for the first 3 learning 
events for a given student within each skill. Using a 
mean of 3 learning events provides a more stable 
estimate of students' knowledge state that is not overly 
influenced by students’ performance in a single 
learning event. 

 Final_Ln – the mean of Ln for the last 3 learning events 
for a given student within each skill. 

 Confidence (BORED), confidence 
(CONCENTRATING), confidence (CONFUSED), 
confidence (FRUSTRATED), confidence (OFF 
TASK), confidence (GAMING) – the mean, for a 
given student within each skill, of the confidence 
scores for the student’s affect prediction labels for 
boredom, concentration, confusion, frustration, off-
task behavior, and gaming respectively. 

C. Analysis Method 
Data preparation yielded 3 datasets containing the 

variables above – one each for whole number division, 
fraction multiplication, and fraction division, based on the 
learning events of the 508 students learning these skills. The 
following analysis steps were conducted to understand 
students’ learning of these skills. Findings of this analysis are 
reported in the next section. 

 K-means clustering – datasets were independently 
scaled and clustered using Learning_Events, 
Initial_Ln, and Final_Ln. Using the elbow method, 3 
clusters were identified as the optimal number for each 
dataset. For each cluster, Wilcoxon signed rank tests 
were used to investigate differences between 
Initial_Ln and Final_Ln. In a subsequent 
interpretation, cross-skill clusters were identified 
qualitatively based on similarities between clusters 
across datasets. 

 Decision tree – Decision tree classifiers were trained 
on each dataset, predicting cluster labels using the 
confidence scores for students’ affect prediction labels. 
To balance the predictability and interpretability of the 
machine learning model [12], the model selection 

pipeline included exhaustive feature selection (EFS) to 
select the best combination of up to 3 features for a 
decision tree classifier with a tree depth of 4, followed 
by hyperparameter tuning using the combination of 
features identified by EFS through a brute force grid 
search. EFS and hyperparameter tuning were 
conducted on a training set of 80% of the original data 
and evaluated using 5-fold cross validation. The best 
model with a tree depth of 3 was evaluated on a test set 
with the remaining original data to ensure robust model 
performance before being selected for interpretation. 
Single decision tree classifiers, EFS and a shallow tree 
depth were employed to improve the explainability of 
models for qualitative interpretation. 

 Cross-tabulation of clusters – A cross-tabulation of 
clusters was conducted and used to characterize the 
learning of students across skills and between cross-
skill clusters. Simple t-tests compared the confidence 
scores of students’ affect prediction labels between 
students from the same cluster of antecedent skills but 
different clusters for later skills (whole number 
division is antecedent to fraction multiplication, which 
is antecedent to fraction division). These were 
conducted to understand whether and how student 
affect could predict students transiting between cross-
skill clusters across skills. 

 Linear regression – to understand predictive 
relationships between antecedent and subsequent skills 
suggested by the cross-tabulation analysis, Ordinary 
Least Squares (OLS) regression was conducted to 
predict the Initial_Ln and Final_Ln values for fraction 
division, using the same variables from the whole 
number division and fraction multiplication. To aid 
understanding of the relative importance of predictor 
features, a third model used Least Absolute Shrinkage 
and Selection Operator (LASSO) regularization to 
identify the more important predictors. For all models, 
5-fold cross validation on a training set consisting of 
80% of the original data was used to fit the models (and 
determine optimal hyperparameters for LASSO 
regularization). The best model was then used to 
predict the outcome variable of a test set consisting of 
the remaining 20% of the original data and obtain the 
R2 and Mean Square Error (MSE). 

III. FINDINGS 

A. Learning Gains vs. Behavioral Engagement  
In response to the inconsistent findings in the literature on 

the effectiveness of ITSs, we calculated the students’ learning 
gains (i.e., the difference between Final_Ln and Initial_Ln) for 
each skill and plotted it against Learning_Events (as a proxy 
for behavioral engagement). See Fig.1.  

Fig. 1 reveals that the learning gains across skills were 
tightly distributed around zero (mean = 0.04), with only a 
slight positive skew (skewness = 0.54). Specifically, for whole 
number division, mean = 0.03, skewness = -0.08; for fraction 
multiplication, mean = 0.01, skewness = 0.54; for fraction 
division, mean = 0.08, skewness = 1.60. Students had higher 
learning gains in fraction division, a more difficult skill. 

Most students had learning gains between -0.25 to 0.25 
and were well engaged with high Learning_Events. We noted 
that about half of the students had negative learning gains.  
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Fig. 1.  Delta vs Learning_Events 

B. Clustering Analysis: Learner Profiles
A K-means clustering using the variables of Initial_Ln,

Final_Ln, and Learning_Events, reveals three optimal number 
of clusters for each skill. Table 1 presents the clustering and 
the Wilcoxon signed rank test comparing the Initial_Ln and 
Final_Ln for each cluster to determine the significance of the 
learning gains. 

Although the clustering was conducted independently for 
each skill, the similarities of the clusters across the skills 
suggest the appropriateness in profiling students. 
Learning_Events are also found to be significantly different 
across the clusters for each skill.  

 Cluster 0 across the skills (named the ‘high achiever’ 
(HA) cluster) were similar with high Initial_Ln and Final_Ln, 
low Learning_Events and statistically significant learning 
gains. High achievers mostly answered questions in ITSs 
correctly. With personalized learning embodied by ITSs, they 
are generally given fewer questions to answer. Hence, there is 
no sub-category of highly or lowly engaged high achievers.  

Cluster 1 across the skills (named the ‘lowly engaged low 
achiever’ (LELA) cluster) were low in Initial_Ln and 
Final_Ln. Their Learning_Events were relatively low but 
higher than those of Cluster HA, perhaps due to system 
behavior (i.e., ASSISTments is designed to give low achievers 
more questions to answer).  

TABLE I.   CLUSTERING OF STUDENTS BASED ON SKILLS 

Whole Number 
Division

Fraction 
Multiplication 

Fraction 
Division  

Cluster 0  

High 
Achievers 

(HA) 

280 students 
Initial_Ln:  
0.81 (0.10) 
Final_Ln:  
0.86 (0.13) 

W=3328, p=0.000 
Learning_Events:  

5.46 (3.90) 

131 students 
Initial_Ln:  
0.56 (0.11) 
Final_Ln:  
0.58 (0.16) 

W=199, p=0.035 
Learning_Events: 

 3.11 (2.12) 

140 students 
Initial_Ln:  
0.59 (0.13) 
Final_Ln: 

 0.70 (0.14) 
W=59, p=0.000 

Learning_Events: 
 3.37 (2.80) 

Cluster 1 

Lowly 
Engaged 

Low 
Achievers 
(LELA) 

137 students 
Initial_Ln: 
0 .22 (.17) 
Final_Ln:  
0.33 (.28) 

W=1675, p=0.001 
Learning_Events: 

7.12 (3.28) 

311 students 
Initial_Ln: 
 0.13 (0.09) 
Final_Ln:  
0.14 (0.10) 

W=14,298,p=0.225 
Learning_Events: 

 6.88 (2.93) 

266 students 
Initial_Ln: 
 0.19 (0.08) 
Final_Ln:  
0.23 (0.13) 

W=7690, p=0.110 
Learning_Events: 

 5.96 (2.64) 
Cluster 2 

Highly 
Engaged 

Low 
Achievers 
(HELA) 

91 students 
Initial_Ln:  
0.27 (0.29) 
Final_Ln:  
0.12 (0.16) 

W=1008, p=0.000 
Learning_Events: 

19.00 (5.85) 

66 students 
Initial_Ln:  
0.10 (0.05) 
Final_Ln: 

 0.11 (0.10) 
W=1088, p=0.911 
Learning_Events: 

18.88 (7.56) 

102 students 
Initial_Ln: 
0 .19 (0.10) 
Final_Ln:  
0.35 (0.26) 

W=1493, p=0.000 
Learning_Events:  

15.24 (4.36) 

Cluster 2 across the skills (named the ‘highly engaged low 

achiever’ (HELA) cluster) were low in Initial_Ln and 

Final_Ln. They had the highest number of learning events. 

The mean of their learning gains for whole number division 

was negative.   

To determine if students’ affect states in learning a skill 
could predict their cluster labels (i.e., student profiles), we 
trained and tested decision tree classification models using the 
confidence scores for student affect to predict the cluster 
labels. Figures 2-4 present the decision trees for each skill. 

Fig. 2. Decision tree for Whole Number Division clustering. 

Fig. 3. Decision tree for Fraction Multiplication clustering.

Fig. 4. Decision tree for Fraction Division clustering.

confidence(CONFUSED) <= 0.011 
gini = 0.555 

samples = 100.0% 
class = cluster LELA 

confidence(FRUSTRATED) <= 0.053 
gini = 0.479 

samples = 35.2% 
class = cluster HA 

confidence 
(FRUSTRATED) <= 0.005 

gini = 0.061 
samples = 7.9% 

class = cluster LELA 

confidence 
(FRUSTRATED) <= 0.022 

gini = 0.426 
samples = 3.2% 

class = cluster HELA 

gini = 0.117 
samples = 3.9% 

class = cluster LELA 

05

confidence 
(FRUSTRATED) <= 0.108 

gini = 0.343 
samples = 27.3% 

class = cluster HA 

gini = 0.0 
samples = 3.9% 

class = cluster LELA 

gini = 0.105 
samples = 22.2% 

class = cluster HA 

gini = 0.254 
samples = 5.2% 

class = cluster LELA 

gini = 0.0 
samples = 1.0% 

class = cluster LELA 

gini = 0.0 
samples = 2.2% 

class = cluster HELA 

gini = 0.502 
samples = 38.9% 

class = cluster LELA 

gini = 0.276 
samples = 22.7% 

class = cluster LELA 

confidence(CONFUSED) <= 0.042 
gini = 0.452 

samples = 64.8% 
class = cluster LELA 

22

confidence 
(FRUSTRATED) <= 0.252 

gini = 0.431 

samples = 61.6% 
class = cluster LELA 

confidence(FRUSTRATED) <= 0.046 

gini = 0.61 
samples = 100.0% 

class = cluster LELA 

confidence(FRUSTRATED) <= 0.003 

gini = 0.278 
samples = 24.6% 

class = cluster LELA 

gini = 0.136 
samples = 10.1% 

class = cluster LELA 

confidence 
(FRUSTRATED) <= 0.091 

gini = 0.491 

samples = 31.8% 
class = cluster HA 

A

confidence 

(FRUSTRATED) <= 0.008 
gini = 0.364 

samples = 14.5% 
class = cluster LELA 

gini = 0.0 
samples = 1.5% 

class = cluster HELA 

gini = 0.238 
samples = 13.1% 

class = cluster LELA 

gini = 0.643 

samples = 18.2% 
class = cluster HA 

gini = 0.036 
samples = 13.5% 
class = cluster HA 

gini = 0.61 
samples = 28.8% 

class = cluster LELA 

gini = 0.213 
samples = 14.8% 

class = cluster LELA 

confidence(FRUSTRATED) <= 0.092 
gini = 0.648

samples = 75.4% 
class = cluster LELA 

1
confidence 

(FRUSTRATED) <= 0.291 
gini = 0.532 

samples = 43.6% 
class = cluster LELA 

confidence(GAMING) <= 0.378 
gini = 0.592 

samples = 100.0% 
class = cluster HA 

confidence(FRUSTRATED) <= 0.063 
gini = 0.513 

samples = 82.8% 
class = cluster HA 

confidence 
(FRUSTRATED) <= 0.034 

gini = 0.552 
samples = 13.8% 

class = cluster LELA 

confidence 
(CONCENTRATING) <= 0.627 

gini = 0.504 
samples = 13.5% 

class = cluster HELA 

gini = 0.434

samples = 5.4% 
class = cluster LELA 

34 (C
confidence 

(FRUSTRATED) <= 0.092 
gini = 0.433 

samples = 69.0% 
class = cluster HA 

gini = 0.538 
samples = 8.4% 

class = cluster LELA 

gini = 0.081 
samples = 41.1% 
class = cluster HA 

gini = 0.648 
samples = 27.8% 

class = cluster LELA

gini = 0.399

samples = 10.1% 
class = cluster HELA 

gini = 0.541 
samples = 3.4% 

class = cluster LELA 

gini = 0.0 
samples = 1.7% 

class = cluster LELA 

gini = 0.625 
samples = 2.0% 

class = cluster LELA 

confidence(FRUSTRATED) <= 0.354 
gini = 0.575 

samples = 17.2% 
class = cluster HELA 

627
confidence 

(FRUSTRATED) <= 0.474 
gini = 0.427 

samples = 3.7% 
class = cluster LELA 
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The high gini results suggest that the decision trees 
balancing predictability and interpretability are not able to use 
affect states (when learning a skill) to predict their cluster 
labels (i.e., student profiles) of the skill satisfactorily. It is 
particularly difficult to differentiate the two low achiever 
clusters (i.e., lowly- vs highly- engaged low achievers). This 
may imply some complexity in emotional engagement in 
learning. A decision tree with more depth and data features is 
needed to make better predictions but harder to interpret.  

We note from the decision trees that the clusters across the 
skills were relatively sensitive to confidence 
(FRUSTRATED). It does not mean that students feel very 
frustrated when using ASSISTments. Rather, it could imply 
that students of different profiles have subtle differences in 
frustration, such as being frustrated for different reasons (e.g., 
work on already mastered questions or repeatedly fail to learn 
and answer correctly) or at different intensity levels.   

We also found that the decision trees could not identify 
Cluster HELA well across the skills, suggesting that the 
composition of students in Cluster HELA could be complex. 
For example, Owen et al. [13] differentiate low achievers with 
high Learning_Events into unproductive (‘wheel-spinning’ 
with reduced motivation) versus productive (maintaining 
action despite failure) persistence. Due to the relatively small 
sample sizes of Cluster HELA across the skills, we did not 
examine this further. 

C. Cross-tabulation: Transition of Clusters Across Skills 
To examine the extent to which students transit to different 

clusters across the skills, cross-tabulations of the clusters 
between skills are presented in the tables below. 

Cross-tabulations reveal that more than half of the students 
changed clusters when they learnt new skills (e.g., moving 
from the HA cluster in whole number division to the HELA 
cluster in fraction multiplication). This transition across the 
skills could imply two possibilities. First, the learning of 
previous skills has little influence on the learning of new 
skills. Second, students’ engagement in learning in 
ASSISTments does not accurately represent their actual 
learning and performance. Our subsequent examinations 
would speak to the possibilities.  

TABLE II.  CROSS-TABULATION OF WHOLE NUMBER  
DIVISION AND FRACTION MULTIPLICATION 

Cross-tabulation 
Frequency 

Whole Number Division 

HA LELA HELA 

Fraction 
Multiplication 

HA 86 30 54 

LELA 171 86 15 

HELA 23 21 22 

TABLE III.  CROSS-TABULATION OF FRACTION  
MULTIPLICATION AND FRACTION DIVISION 

Cross-tabulation Frequency 
Fraction Multiplication 

HA LELA HELA 

Fraction 
Division 

HA 61 67 12 

LELA 47 191 28 

HELA 23 53 26 

 

TABLE IV.  CROSS-TABULATION OF WHOLE NUMBER  
DIVISION AND FRACTION DIVISION 

Cross-tabulation 
Frequency 

Whole Number Division 
HA LELA HELA 

Fraction 
Division 

HA 82 36 22 

LELA 148 78 40 

HELA 50 23 29 

 

We further analyzed Cluster HA of antecedent skill on 
their transition to different clusters when they learnt 
descendent skills. It is to understand how their transition can 
be predicted by the variations in Initial_Ln, Final_Ln, 
Learning_Events and affect states when they learnt the 
antecedent skill. 

Table 5 (next page) reveals that among the Cluster HA in 
whole number division, students are more likely to be in 
Cluster HELA in fraction multiplication if they show 
emotional disengagement (e.g., bored, confused, and 
frustrated).  

In addition, we interpret Learning_Events as system 
behavior (i.e., high achievers answer questions in ITS more 
accurately hence receive less questions from ITS) rather than 
a predictor of learning gain (i.e., better learning because of 
behavioral engagement).  

Table 6 (next page) shows that students’ emotional 
engagements (i.e., boredom, confusion, and concentration) 
when learning whole number division can be early indicators 
to differentiate student profiling when they learn fraction 
division.  

It is interesting to note in Table 6 that high achievers in 
fraction multiplication were more likely to transit to the low 
achiever clusters (Clusters LELA and HELA) in fraction 
division when they had higher Initial_Ln, Final_Ln, and 
Learning_Events in fraction multiplication. It suggests that 
emotional engagements in learning whole number division are 
better early indicators than skill mastery in predicting the 
transfer.  

In contrast, Table 7 (next page) shows that high achievers 
in fraction multiplication who have high skill mastery and low 
frustration are more likely to be higher achievers in fraction 
division. The difference between Tables 6 and 7 may be 
because the skill of fraction division is more linked to the skill 
of fraction multiplication (i.e., fraction division can be solved 
using an inverse-and-multiply procedure) than whole number 
division, hence there are transfer of learning from fraction 
multiplication to fraction division.  

We also examined how Cluster LELA students in fraction 
multiplication transited to different clusters in fraction 
division. Analyzing this largest cluster across all skills helps 
us understand conditions in which low achievers in an 
antecedent skill transit to different clusters in a descendent 
skill. See Table 8.  
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TABLE V.  DIFFERENCES IN WHOLE NUMBER DIVISION CLUSTER HA 
PREDICTS THE TRANSITION TO FRACTION MULTIPLICATION CLUSTERS 

 
Significant differences among 
Cluster HA Students in Whole 

Number Division 

Cluster HA vs. Cluster 
LELA in Fraction 

Multiplication 

Learning_Events 

(t = -2.73, p = 0.007) 

confidence(BORED) 
(t = -2.76, p = 0.006) 

confidence(CONFUSED) 

(t = -2.50, p = 0.013) 
confidence(FRUSTRATED) 

(t = -2.36, p = 0.019) 

Cluster HA vs. Cluster 
HELA in Fraction 

Multiplication 
No significant difference found 

Cluster LELA vs. Cluster 
HELA in Fraction 

Multiplication 
No significant difference found 

TABLE VI.  DIFFERENCES IN WHOLE NUMBER DIVISION 
CLUSTER HA PREDICTS THE TRANSITION TO FRACTION 

DIVISION CLUSTERS 

 
Significant differences among 
Cluster HA Students in Whole 

Number Division 

Cluster HA vs. Cluster 
LELA in Fraction Division 

Initial_Ln 

(t = -2.10, p = 0.037) 
Final_Ln 

(t = -2.13, p = 0.034) 

Learning_Events 
(t = -3.95, p = 0.000) 

confidence(BORED) 

(t = -2.65, p = 0.009) 
confidence(CONCENTRATING) 

(t = 2.21, p = 0.028) 

confidence(CONFUSED) 
(t = -2.18, p = 0.030) 

Cluster HA vs. Cluster 
HELA in Fraction Division 

Initial_Ln 

(t = -1.97, p = 0.05) 

Final_Ln 
(t = -3.92, p = 0.000) 

Learning_Events 

(t = -4.29, p = 0.000) 
confidence(CONFUSED) 

(t = -2.11, p = 0.037) 

Cluster LELA vs. Cluster 
HELA in Fraction Division No significant difference found 

TABLE VII.  DIFFERENCES IN FRACTION MULTIPLICATION CLUSTER 
HA PREDICTS THE TRANSITION TO FRACTION DIVISION CLUSTERS 

 
Significant differences among 

Cluster HA Students in 
Multiplication 

Cluster HA vs. Cluster 
LELA in Fraction Division 

Initial_Ln 

(t= 2.71 p = 0.008) 
Final_Ln 

(t= 2.88 p = 0.005) 

confidence(FRUSTRATED) 
(t= -2.60, p = 0.011) 

Cluster HA vs. Cluster 
HELA in Fraction Division 

Learning_Events 
(t= -2.28, p = 0.025) 

Cluster LELA vs. Cluster 
HELA in Fraction Division No significant difference found 

 
 

TABLE VIII.  DIFFERENCES IN FRACTION MULTIPLICATION CLUSTER 
LELA PREDICTS THE TRANSITION TO FRACTION DIVISION 

CLUSTERS 

 
Significant differences among 

Cluster LELA Students in Fraction 
Multiplication 

Cluster HA vs. Cluster 
LELA in Fraction Division 

Final_Ln 

(t = 2.33, p = 0.021) 

confidence(FRUSTRATED) 
(t = -2.45, p = 0.015) 

Cluster HA vs. Cluster 
HELA in Fraction Division 

confidence(FRUSTRATED) 
(t = -3.22, p = 0.002) 

Cluster LELA vs. Cluster 
HELA in Fraction Division 

Learning_Events 

(t = -3.49, p = 0.001) 

 
Table 8 reveals that high emotional engagement (i.e., less 

frustrated) in learning fraction multiplication and good skill 
mastery (relative among low achievers) can be early indicators 
to predict lowly engaged low achievers in fraction 
multiplication who became high achievers in fraction division. 
The finding suggests ways to help low achievers to catch up, 
for example using more engaging pedagogy for emotional 
engagement and providing remedy to improve prior 
knowledge. 

D. Linear Regression Modelling 
Lastly, suggested by findings in Tables 6-8, we examined 

the extent to which the learning of whole number division and 
fraction multiplication could predict the learning of fraction 
division using linear regression modelling.  

First, we used the Initial_Ln and Final_Ln for whole 
number division and the Initial_Ln and Final_Ln for fraction 
multiplication to predict the Initial_Ln of fraction division. 
The MSE is 0.048 and The R2 score is 0.0008 which is close 
to zero, indicating that the model does not explain much of the 
variability in the Initial_Ln of fraction division based on the 
predictors chosen. This suggests limited transfer (i.e., students 
using skills learnt previously to help them solve novel 
questions of the skills not yet learnt).   

Second, we used the Initial_Ln and Final_Ln for whole 
number division and the Initial_Ln and Final_Ln for fraction 
multiplication to predict the Final_Ln of fraction division. We 
did not include Initial_Ln of fraction division as an 
independent variable because our interested in the learning of 
antecedent skills predicting the learning of descendant skills.  

The MSE is 0.0565 and the R2 score is 0.1516. While the 
R2 is still relatively low, it is much higher than the R2 value 
for predicting Initial_Ln of fraction division.  

We then performed feature selection using LASSO. The 
MSE is 0.0578 and R2 is 0.1315. The of the 
predictors (after LASSO regularization) are: 

 Initial_Ln of whole number division: 0.00  

 Final_Ln of whole number division: 0.00  

 Initial_Ln of fraction multiplication: 0.0244  

 Final_Ln of fraction multiplication: 0.0545 

The results from the LASSO model suggest that students’ 
initial and final mastery of fraction multiplication are more 
important in predicting their final mastery of fraction division.  

IV. CONCLUSION AND DISCUSSION  

Putting the findings together, our analyses on the 
ASSISTments sub-dataset revealed that students generally 
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had slightly more learning gains on fraction division than 
whole number division and fraction multiplication. The 
cluster analysis showed three clusters of student profiles, 
namely ‘high achievers’, ‘highly engaged low achievers’ and 
‘lowly engaged low archivers’, across the three skills. In this 
paper, students with higher Learning_Events are regarded to 
be highly engaged, behaviorally. We also noted that students 
transited to different clusters when they learnt new skills, 
implying dynamics in learning and transfer.  

Affective states showed potential to predict student 
profiling, particularly as early indicators on students transiting 
to different clusters in future learning of new skills. This 
finding is congruent with the work by Richey et al. [14] on the 
importance of epistemic emotions in learning.  

We also found that learning and mastery of antecedent 
skills had some influence on the learning and mastery of 
subsequent skills.   

Rising above from the findings, we highlight key 
inferences concerning students’ learning of K-12 
mathematics, their engagements in ASSISTments and the 
implications. Although our study in the context of 
ASSISTments dataset and for learning mathematics, the 
implications we discuss may inform the understanding of 
learning in broader contexts. 

A. Learning and Engagement in ASSISTments 
First, the present study found students to be engaged when 

learning in ASSISTments. Student engagement is a 
multifaceted construct encompassing various dimensions, 
namely, behavioral, cognitive, emotional, and agentic [15]. 
Compared to other ITS, such as Cognitive Tutor, which 
captures the process data of students problem-solving 
activities, ASSISTments only records students’ activities 
through their responses, thereby providing limited insights 
into students’ cognitive engagement. Furthermore, like other 
ITSs, ASSISTments curates questions for students to answer 
and thus restricts students’ agentic engagement when using 
the platform. Nevertheless, the findings from this study 
revealed that students demonstrated behavioral and emotional 
engagement when learning in ASSISTments.  

Second, emotional engagement (i.e., less boredom) in 
ASSISTments is a more reliable predicator of learner profiles 
and learning gains in ASSISTments.  Although our study 
identified behavioral engagement among students in 
ASSISTments, it is vital to recognize that the completion of 
these Learning_Events is predominantly a consequence of 
system-driven behavior rather than reflective of students' 
agentic learning behaviors. As a result, these existing 
behavioural metrics may not be indicative of students’ active 
participation in learning activities within the platform.  

In contrast, emotional engagement when learning a skill 
has a potential to predict learner profiles, not only for the 
learning of the current skill (e.g., whole number division) but 
also the future learning of descendent skills (e.g., fraction 
multiplication and fraction division). The findings underscore 
the need to engage students emotionally in learning via ITS.  

Recognizing the limitations of behavioral metrics (more as 
system behavior) in capturing student learning engagement, 
our findings supported the importance of delving into 
affective dimensions to gain a more holistic understanding of 
students’ learning experiences within the ASSISTments 
environment.  

Third, the findings revealed that students with different 
learner profiles had different levels of learning gains. To 
optimize their learning, we can consider the framework of 
knowledge-learning-instruction (KLI) dependency [16]. 
Koedinger et al. [16] purports that learning by a particular 
student from a course can be improved by first identifying the 
needed concepts and skills and second, selecting the 
instructional methods that best support the kind of learning 
needed for these concepts and skills by the profile of student. 
ASSISTments and other ITSs could further consider how to 
adapt pedagogical supports to help students of different 
learner profiles to optimize their learning in ITSs.  

B. Learning of Math 
We noticed a lot of fluidity across the learning of 

antecedent and descendant math curriculum topics (i.e., skills 
referred to in the ITS literature). We observed that about half 
of the students changed to other learner profiles when they 
learn new skills, even though the skills are conceptually 
linked. The linear regression model also showed that learning 
of antecedent skills has some but limited influence on the 
learning of subsequent new skills. For example, students’ 
Initial_Ln of fraction division is barely predictable by their 
knowledge of whole number division and fraction 
multiplication. Although Initial_Ln and Final_Ln for faction 
multiplication can predict the Final_Ln of fraction division, 
the R2 is still relatively low.  

The fluidity across the learning of different math 
curriculum topics presents promising opportunities for low 
progress learners to leverage ITS as a level playing field for 
personalized learning and a remedial resource for academic 
advancement, particularly when learning difficult curriculum 
topics such as fraction division. The availability of ITS, 
therefore, offers a potential avenue to accommodate to the 
learning needs among different groups of students. This 
fluidity also cautions students doing well in math, 
demonstrating the need to refrain from complacency based on 
prior achievements when learning new curriculum topics. This 
serves as a reminder that performing well in one math topic 
does not necessarily translate to ease in mastering others. We 
acknowledge that general intelligence and math ability could 
contribute to the learning of new math curriculum topics as 
well, but these aspects are not measured in ITSs.  

C. Enhancing the Design of ITSs 
Our clustering of students’ learning underscores the 

importance of a more nuanced way of profiling students in the 
student model. Student modeling and profiling are critical to 
ITSs for real-time adaptations, but most student models in 
ITSs only overlay the students’ performance with the 
knowledge model to identify students’ knowledge gaps [17]. 
They do not have comprehensive student profiling for real-
time adaptation. Many education data mining papers have 
shown ways of profiling students. For example, Bouchet et al. 
[18] profile students according to their behavioral interactions 
with ITS. However, these profiling techniques are rarely built 
in ITSs for real-time profiling and adaptation. 

The fluidity across the learning and the KLI dependency 
also provide a good argument for rich pedagogical approaches 
to be included and optimized in ITSs to optimize enhance 
personalized learning. Most ITSs provide direct instruction by 
showing students correct answers and by providing scaffolded 
hints. Learning Science research has, over the years, identified 
many powerful pedagogical approaches and learning 
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strategies, for example cognitive load and worked examples 
[19], comparing contrasting cases [20], analogical learning 
[21], etc. Including these pedagogical and learning 
approaches, particularly those with good emotional 
engagement, in ITSs not only enhances promotes learning in 
ITSs through data driven optimization, but also provides an 
opportunity to further enhance the theorization of these 
pedagogical and learning approaches [22]. 

D. Limitations and Future Work  
A few limitations are acknowledged to inform the future 

work. First, to examine the learning of whole number division, 
fraction multiplication and fraction division, we focused on a 
smaller sub-sample of the ASSISTments dataset. Because the 
sample is relatively small, some analysis could not be carried 
out. This limitation can be addressed in future with larger 
datasets or complementing it with qualitative case studies.  For 
example, Owen, et al., [13] examine a dataset from a game-
based adaptive learning system and find a group of learners 
with unproductive perseverance (i.e., students spending 
considerable time on a topic without achieving mastery). They 
called this behavior ‘wheel-spinning’. A qualitative case study 
following our paper could examine how students in the HELA 
cluster learn over time to decipher whether students are 
cognitively engaged or just wheel-spinning. Extending our 
analysis to larger datasets, including data from other ITS 
platforms, could also provide a more comprehensive view of 
learners and their learning processes and outcomes.  

Second, we did not critically examine the affect prediction 
labels (e.g., boredom, confusion, frustration, etc.) in the 
ASSISTments dataset for their validity corresponding to the 
respective constructs in the emotion literature. While critically 
examining these affect prediction labels is beyond the scope 
of this paper, future study could establish the theorical validity 
of these emotional constructs in ASSISTments to enable 
meaningful interpretation of students’ emotional engagement 
in learning in ITS. For example, a more valid understanding 
of emotional and behavioral engagements could allow us to 
infer the cognitive engagement of the HELA students and to 
understand whether they are engaged or just wheel-spinning.  

Third, a common limitation of ITS datasets is that these 
datasets capture only a portion of student learning, hence these 
ITS datasets provide incomplete, though important, 
understanding of student learning. As students usually learn 
and practice on ITS after the usual classroom teaching or as 
homework, a portion of student learning such as classroom 
learning is not captured in ITS. Hence, the dynamics between 
students’ diverse learning behaviors and their learning gains 
in ASSISTments must be understood with this limitation in 
mind. Further research could consider integrating data from 
multiple sources, for example by examining how students 
learn both within and outside ITS, to provide a more holistic 
understanding of student learning behavior and outcomes.  
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