
Unveiling the Potential of ChatGPT in Detecting
Machine Unauditable Bugs in Smart Contracts: A

Preliminary Evaluation and Categorization

Bo Gao, Qingsong Wei, Yong Liu, Rick Siow Mong Goh
Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR)

Singapore, Singapore

Email: {gao bo, wei qingsong, liuyong, gohsm}@ihpc.a-star.edu.sg

Abstract—Smart contracts are becoming an integral part of
decentralized applications, yet exploitable bugs in these contracts
pose significant threats, often leading to considerable monetary
losses. Traditional tools often struggle to identify these bugs,
with a recent study indicating that 80% of them are classified
as Machine Unauditable Bugs (MUBs), rendering conventional
approaches ineffective in addressing such cases. In practice,
identifying MUBs requires seasoned expertise and is time-
intensive, often stalling project progress. In this work, we present
a preliminary evaluation of the performance of ChatGPT, a state-
of-the-art large language model, especially in detecting MUBs.
Our study first investigates the effectiveness and limitations of
ChatGPT in detecting various categories of MUBs with two
kinds of prompts, general prompts and guidance prompts, on
246 real-world MUBs collected from Code4rena between 2021
and 2022. Subsequently, we compared the leading tool, SPCON,
with ChatGPT on 17 CVE contracts with access control issues
(a category of MUBs), and found that ChatGPT exhibited
comparable performance but better usability over SPCON. We
summarize the implications of our findings for the broader
community, shedding light on the model’s capabilities, limitations
and potentials in detecting smart contract bugs. Our evaluation
dataset and results are released at Github1.

Index Terms—ChatGPT, Exploitable bugs, Effortless usage

I. INTRODUCTION

Smart contracts have revolutionized the blockchain ecosys-

tem by enabling decentralized applications and trustless

interactions between parties. The decentralized nature of

blockchain platforms, such as Ethereum [1], has spurred

the rapid development and deployment of these contracts.

However, with the increasing adoption of smart contracts

comes the inevitable growth in complexity and value, which

subsequently attracts attackers and underscores the importance

of bug detection in their development.

A variety of methods have been developed to identify smart

contract vulnerabilities, such as reentrancy, integer overflows,

Transaction-ordering Dependency (TOD), and Gas-related Is-

sues [2]–[6]. While these approaches have been proven effec-

tive in detecting general and relatively simple vulnerabilities

across various projects, they are mostly tailored for Machine

Auditable Bugs (MABs), i.e., which account for only about

This Research is supported by the RIE2025 Industry Alignment Fund –
Industry Collaboration Project (IAF-ICP) (Award No: I2301E0020), adminis-
tered by A*STAR

1https://github.com/Wormfol/Detect-MUBs-by-ChatGPT/tree/master

20% of exploitable bugs [7]. Notably, the remaining 80%

are categorized as Machine Unauditable Bugs (MUBs), which

presents a significant limitation in the applicability of existing

tools across a wide range of scenarios. To delve further into

this classification, we will elaborate in Section II-B on the

distinguishing characteristics between MABs and MUBs.
MUBs pose a considerable challenge in their detection,

often demanding substantial manual involvement from expe-

rienced practitioners for their identification. In recent times,

notable progress in the realm of natural language process-

ing, particularly the development of Large Language Models

(LLMs) like ChatGPT [8], offer new possibilities for bug

detection and analysis due to their remarkable capabilities.

These models stand as a promising pathway for the exploration

of alternative strategies aimed at addressing the intricate issues

associated with MUBs and potentially complement existing

automated tools in smart contract security.
Significant discourse has emerged within the community

regarding the effectiveness of LLMs in analyzing smart con-

tracts. Nevertheless, a comprehensive investigation into this

matter has remained absent as of this writing. To address this

gap, this paper presents a preliminary assessment of Chat-

GPT’s ability in detecting MUBs which we are especially in-

terested in. While improvements to existing tools can enhance

the capabilities in detecting MABs, the detection of MUBs

requires the expertise of experienced professionals due to their

complicate nature. This study first examines 246 instances

of real-world MUBs collected from Code4rena between 2021

and 2022, focusing on the model’s effectiveness in detecting

various MUB categories and understanding its limitations

in recognizing different types of MUBs. Furthermore, we

compare ChatGPT with the state-of-the-art tool, SPCON [9],

in detecting access control problems on 17 contracts reported

in Common Vulnerabilities and Exposures (CVE) system [10],

and found that ChatGPT exhibits comparable performance

with better usability. Moreover, we explore the implications of

our findings for the broader community, unveiling the model’s

capabilities in detecting smart contract bugs and providing

insights beneficial to the development of robust LLM-based

automated bug detection tools.
To conclude, we make the following contributions.

• A comprehensive assessment of ChatGPT’s performance

1482

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00266

1 function subscribe(uint posId, uint incentiveId) public {
2 Position memory position = positions[posId];
3 IConcentratedLiquidityPool pool = position.pool;
4 Incentive memory incentive = incentives[pool][posId];
5 Stake storage stake = stakes[posId][incentiveId]; ...
6 }

Fig. 1: Example Contract with Implementation Bug

in identifying MUBs across 246 real-world smart contract

vulnerabilities.

• A detailed comparative analysis of ChatGPT and SPCON

in identifying access control problems in 17 CVE con-

tracts, highlighting the advantages of ChatGPT in terms

of usability and effectiveness.

• Insights into the implications of our findings for practi-

tioners and researchers, contributing to the development

of more effective automated tools for bug detection and

prevention with LLMs.

II. BACKGROUND AND RESEARCH QUESTIONS

This section introduces a flawed smart contract with im-

plementation bugs, which serves as a basis to discuss bug

categorizations. It allows us to define the research questions

guiding our study. We assume some familiarity with basic

concepts such as blockchain, Ethereum, and smart contracts,

and refer readers to [11] for details.

A. Illustrative Example

Fig. 1 shows a smart contract function from the Sushi

Trident project by SushiSwap2 which reveals an implemen-

tation bug [12]. This flaw came to light during the Code4rena

(C4) contest organized by the Sushi Trident project between

September 30 and October 6, 2021. In C4 contests, community

members, known as “Wardens,” engage in reviewing, auditing,

and analyzing smart contract logic. Successful findings reward

these Wardens with bounties offered by the host projects.

As shown in Fig. 1, the function subscribe is intended to

subscribe a certain Position identified by posId to a certain

Incentive identified by incentiveId. The implementation bug

lies in line 4 where the incentives mapping is being indexed

first by pool and then by posId. However, posId should be

incentiveId, a counter that increases by one whenever a new

incentive is added to the pool. The usage of posId could cause

the wrong incentive to be used. Such a mistake exemplifies an

implementation bug. Detecting it via automated tools can be

a formidable challenge since it involves a misunderstanding

of the contract’s logic, rather than a clear-cut violation of

common coding practices or security guidelines.

B. Classification and Categorization of Bugs

This section introduces the different types of bugs that exist

within the scope of our study, which also provides the context

for our research.

2A decentralized exchange and automated market maker built on Ethereum.

1) Description of MABs and MUBs: An exploitable bug

is a bug which can cause direct financial loss. Machine

Auditable Bugs (MABs) represent exploitable bugs derived

from a comprehensive study of 37 automated bug detection

methods published in esteemed Software Engineering, Secu-

rity, and Programming Language conferences and journals

between 2017 and 2022. In total, 17 distinct types of MABs

are concluded3. A bug that aligns with any category within

the 17 types is labeled as a MAB [7]. In the contrary, any bug

that doesn’t match any of the MAB categories is categorized

as a Machine Unauditable Bug (MUB). In our study, MUBs

serve as a metric to evaluate the efficacy of automated tools

as well as ChatGPT.

2) Categories of MUBs: To differentiate the varying de-

grees of difficulty in identifying different MUBs and to

facilitate the creation of guiding prompts for LLMs, we have

organized the MUBs into six distinct categories, they are: (C1)

price oracle manipulation; (C2) erroneous accounting; (C3)

improper access control; (C4) erroneous state updates; (C5)

atomicity violations; and (C6) implementation specific bugs.

We refer the interested users to [13] for further information.

C. Key Motivation

Our emphasis on MUBs in this study stems from the

following significant observations derived from [7]:

Observation 1: A large portion (80%) of exploitable bugs in

the wild are machine unauditable.

Observation 2: Majority of exploitable bugs are difficult to

find. Of the detected bugs, 54.29% MUBs were reported by

a single auditor, indicating that such bugs would be exploited

if this auditor missed, thus, the highest difficulty. Merely 25%

of exploitable bugs were identified by three or more auditors.

Observation 3: Different types of MUBs have different au-

diting difficulties, with price oracle manipulation (C1) and ID

uniqueness violation (C3) bugs the hardest (75% by 1 auditor)

and the easiest (43% by 1 auditor), respectively.

D. ChatGPT and Prompts

ChatGPT [14] is an advanced large language model devel-

oped by OpenAI, based on the GPT-4 [15] architecture. We

use GPT-4 and ChatGPT interchangeably hereafter. Trained on

a diverse range of internet text, it demonstrates a remarkable

ability to generate human-like text and understand context.

In the context of smart contract bug detection, ChatGPT’s

understanding of programming languages, pattern recognition,

and knowledge of known vulnerabilities equip it with the

potential to identify critical smart contract bugs.

While LLMs, including ChatGPT, have demonstrated re-

markable performance across various tasks, their ability to

reason also depends heavily on prompt design. Several in-

novative approaches, such as Chain-of-Thought (CoT) [16],

Least-to-Most [17] and Complex CoT [18] have been proposed

to bolster the performance of LLMs in datasets demanding

3Due to page limitation, we show the table in https://github.com/
Wormfol/Detect-MUBs-by-ChatGPT/blob/master/results/bugCat.md#
machine-auditable-bugs-mubs

1483

TABLE I: Code4rena Dataset

Reports MUBs Relevant files Contests LoC (Avg) Bounties

Code4rena 246 206 80 4675 5.03M

reasoning. Taking into account the intrinsic variances across

tasks and the dimensions of the inputs, our investigation draws

inspiration to come up with different prompts, which are

elaborated upon in Section III-B. In our study, we will explore

ChatGPT’s capabilities in pinpointing MUBs, particularly in

the context of varying prompt designs.

E. Research Questions

Based on the above categorization and discussion, we pro-

pose the following research questions of particular interest.

1) How effective is ChatGPT, with and without special

guidance, in identifying MUBs which elude traditional

bug detection tools?

2) How much improvement does guidance prompts provide

for ChatGPT compared to general prompts?

3) What are the limitations of ChatGPT in recognizing

specific types of MUBs?

4) How does ChatGPT perform comparing with the tradi-

tional state-of-the-art tool, SPCON, in identifying one

kind of MUBs, access control problems?

III. EVALUATION AND KEY FINDINGS

In this section, we introduce the dataset employed for our

evaluation and elaborate on our key discoveries in response to

the research questions outlined in Section II-E.

A. Dataset

Our dataset is designed to reflect real-world scenarios and

challenges, making it a robust benchmark for evaluation. It

comprises of two sets.

The first set, sourced from Zhang et al. [7], consists of

246 MUBs from the Code4rena4 contest reports. They dis-

tributed across 206 contract files from 80 Code4rena contests

(projects), spanning from April 2021 to December 2022, as

shown in Table I. Each project consists of multiple contract

files, and the average total lines of code (LoC (Avg)) without

comments and blank for each project is 4675. We skip lengthy

contracts surpassing ChatGPT’s processing capacity, expecting

this constraint to soon be obsolete due to LLM advancements.

These bugs represent about $2.3 billion secured by Code4rena

audits and $5.03 million in bounties, offering a varied dataset

for assessing ChatGPT’s performance on current vulnerabili-

ties.

The second dataset is selected from 531 smart contract

CVEs, exactly the same benchmarks used in [9]. The details

are shown in Table IV.

4Code4rena [19] is a leading audit contest platform for pre-deployment
projects. The platform engages project developers to commit bounties up to
$1M as incentives to draw participants from all over the world. Community
experts selected and developers collaboratively review the submitted bug
reports and reward the participants based on the severity and frequency of
a particular bug submission.

B. Settings

Considering the probabilistic nature of language models

such as ChatGPT, which may miss certain issues in a single

run, we conduct three runs with identical prompts for each

project, collect unique responses, and provide explanations

for manual review. Only after this review process is each

occurrence of a bug deemed a valid alarm.

Our evaluation makes use of two distinct types of prompts:

the general prompt and the guidance prompt. The general

prompt is introduced to achieve universal applicability. This

means that regardless of the specific smart contract being

examined, this prompt can be employed to analyze potential

vulnerabilities. By using a broad phrasing, it provides users

with a versatile tool that can be applied with minimal effort.

The guidance prompt provides a more granular approach to

evaluate potential vulnerabilities in smart contracts. Crafted

with precision and a distinct focus on specific MUB categories,

it guides ChatGPT to analyze those specific areas more deeply.

Our initial idea was to offer a concise description of each

MUB category within the prompt, similar to the approach

adopted in the CoT study [16]. However, given ChatGPT’s

expansive training data and its inherent understanding of these

concepts, we realized that such descriptions were redundant.

Our preliminary experiments confirmed this observation, as

there was no discernible difference in ChatGPT’s responses

with or without the category explanations.

One notable trade-off when using the guidance prompt is

the need for multiple iterations. Since each prompt is tailored

to a specific MUB category, analyzing a smart contract for

all possible vulnerabilities requires running the contract with

each category-specific prompt. This means that for a smart

contract, if there are six MUB categories under consideration,

the contract will have to be processed at least six times using

ChatGPT – once for each category. This is in contrast to

the general prompt, where only a single run is necessary.

The following shows the different prompts employed in our

evaluation.

• General Prompt: “Identify any general vulnerabilities

(like overflow, reentrancy) or the functional vulnerabil-

ities in the following Solidity smart contracts”.

• Guidance Prompt: “Analyze the potential for price oracle

manipulation in the following smart contract, focusing

on how price is calculated or external data is fetched and

used in the contract’s functions5”.

While this setup provides an informative overview, more

comprehensive results could potentially be achieved by mul-

tiple interactive rounds with richer contextual information.

C. ChatGPT’s Effectiveness on MUBs with General Prompts

With the general prompt, ChatGPT is able to detect 200

unique high-risk MUB bugs, initially totaling 258 before

overlap removal. A comprehensive breakdown of this data

5The detailed prompts along with the evaluation results can be
found at https://github.com/Wormfol/Detect-MUBs-by-ChatGPT/blob/master/
results/prompts

1484

TABLE II: Bug Summary with by ChatGPT General Prompt

GPT confirm GPT in report GPT potential GPT incorrect GPT alarm

13 (5%) 4 145 38 200 (258)

1 function setAddresses(IYETIToken _yeti, IERC20 _yusd)
external onlyOwner {

2 require(!addressesSet, "addresses already set");
3 yetiToken = _yeti;
4 yusdToken = _yusd;
5 addressesSet = true;
6 }
7 function emergenWithdraw() external {
8 require(msg.sender == Ownable(address(factory)).

owner(), "Event: caller is ..."); ...
9 }

Fig. 2: Alarms by ChatGPT with General Prompt

is provided in Table II. The column “GPT confirm” refers

to MUB bugs which feature in Code4rena’s reports and are

also detected by ChatGPT. A closer inspection of the figures

reveals that merely 13 bugs, or 5% of the total bugs from the

Code4rena’s report, were confirmed as MUBs by ChatGPT.

Finding 1: ChatGPT demonstrates limited effectiveness

(5% averagely) in detecting MUBs with general prompts.

We proceeded to analyze the remaining 187 alarms

raised by ChatGPT in Table II, which are catego-

rized as “GPT in report” (4), “GPT potential” (145) and

“GPT incorrect” (38). The “GPT in report” category in-

cludes MUB bugs identified by ChatGPT that feature in

the Code4rena reports but aren’t considered high-risk by the

Code4rena community. These findings, however, still bear sig-

nificance as such classification often hinges on the developers’

subjective discretion.

“GPT potential” refers to potential bugs that may serve as

alerts for developers but are not strictly problematic. For ex-

ample, in Fig. 2, the function setAddresses sets the addresses

for the YETI and yUSD tokens by the owner. While ChatGPT

correctly comprehends the intent of this function, it still raises

an alarm because it thinks “The function can only be called

once. If the owner forgets to set the addresses, the contract

could become unusable”. Although we regard this explanation

as overly cautious, we categorize such alarms as potential bugs

since they could remind users to exercise caution, even if the

likelihood of occurrence is very low. “GPT incorrect” includes

instances that were proved false after manual verification. This

category captures various types of ChatGPT errors, which are:

1) ChatGPT sometimes neglects existing constraints within

functions and raises unwarranted alarms. For instance,

in Fig. 2, it incorrectly suggests emergenWithdraw
could be called by any external address, despite line 8

managing this issue.

2) ChatGPT does not capture the functions correctly, issu-

ing warnings for non-existent variables or issues.

3) ChatGPT does not always understand the basic prin-

ciples of smart contracts, such as the fact that uint
type cannot be negative, that overflow is automatically

checked from Solidity 0.8.0 onwards, etc.

TABLE III: Bugs by ChatGPT with Guidance Prompts

Bug Cat. C1 C2 C3 C4 C5 C6 Total

Code4rena 24 63 34 21 46 59 246
GPT alarm 63 148 76 46 192 105 630
-GPT confirm 8 5 9 7 5 2 36
-GPT in report 5 7 7 2 6 5 32
-GPT potential 13 55 44 13 105 69 299
-GPT incorrect 37 81 16 24 76 29 263

GPT conf(%) 33% 8% 26% 33% 11% 3% 15%

TABLE IV: SPCON vs ChatGPT on CVE

CVE Report LOC SPCON
GPT

confirm newb potential incorrect

CVE-2018-10666 163 � � 0 2 0
CVE-2018-10705 98 � � 0 1 0
CVE-2018-11329 113 � � 0 2 0
CVE-2018-17111 72 � � 0 1 0
CVE-2018-19830 140 N/A1 � 0 2 3
CVE-2018-19831 233 � � 1 2 2
CVE-2018-19832 174 � � 0 2 2
CVE-2018-19833 60 N/A1 � 0 1 0
CVE-2018-19834 139 N/A1 � 0 2 2
CVE-2019-15078 174 � � 0 3 2
CVE-2019-15079 58 � � 0 1 1
CVE-2019-15080 121 � � 0 2 1
CVE-2020-17753 350 � � 0 5 2
CVE-2020-35962 540 � � 0 3 1
CVE-2021-3006 120 N/A2 N/A2 N/A2 N/A2 N/A2
CVE-2021-34272 133 � � 0 2 1
CVE-2021-34273 80 � � 1 1 0

Finding 2: While ChatGPT comprehends most principles

and rules of smart contracts, it occasionally demonstrates

inconsistent understanding by raising false alarms.

In addition to ChatGPT’s inconsistent understanding of

smart contracts, the discrepancy in bug counts between

Code4rena and ChatGPT primarily stems from two factors:

(1) the model’s limited capacity to identify high-risk bugs with

general prompts and; (2) the token (input length) restriction

that usually confines the analysis to a single file.

D. ChatGPT’s Effectiveness on MUBs with Guidance Prompts

To evaluate the effect of guidance prompts on Chat-

GPT’s bug detection capabilities, we conducted experiments

on the six MUB categories’ bugs. Table III presents the

results, demonstrating the performance of ChatGPT when

using category-specific prompts. The “Code4rena” row records

the count of high-risk bugs from the Code4rena reports per

category. The column headers parallel with the ones explained

in Table II and will not be reiterated here. Importantly,

“GPT conf(%)” calculates the ratio of bugs confirmed to the

total bugs present in the Code4rena reports, offering an insight

into the model’s precision for each category. The “Total”

column represents the aggregate of bugs reported in Code4rena

and detected by ChatGPT across all categories.

Table III reveals that, with guidance prompts, ChatGPT

detected a total of 36 bugs (15% of the bugs in Code4rena

reports). This is a noticeable increase from the 13 bugs (5%)

it was able to detect with general prompts, as detailed in sec-

1485

tion III-C. This improvement underscores the significance of

crafting specific and detailed prompts to maximize ChatGPT’s

potential in bug detection tasks.

Finding 3: Guidance prompts enhance ChatGPT’s effec-

tiveness in identifying bugs, raising detection rate to 15%

on average, compared to 5% with general prompts.

The table further showcases that the effectiveness of Chat-

GPT in identifying high-risk bugs varies across different bug

categories, as shown in the “GPT conf(%)” row. ChatGPT

identified 33% of high-risk bugs in price oracle vulnerabilities

(C1) and erroneous state updates (C4), but only detected 3%

in specific implementation bugs (C6). This discrepancy likely

stems from two factors: 1) the more conceptual or structural

vulnerabilities, like C1 and C4, may be easier to identify

through code analysis and pattern recognition; 2) ChatGPT’s

performance is largely dependent on the data it was trained on.

It’s likely that the data includes more examples and discussions

related to vulnerabilities C1 and C4. Conversely, specific

implementation bugs (C6) which vary significantly and lack

generic patterns, are less represented in the training data,

affecting the ChatGPT’s capability to identify them effectively.

Finding 4: ChatGPT’s performance varies across different

bug categories, showing differential proficiency in recog-

nizing high-risk bugs.

E. ChatGPT vs SPCON on Finding Access Control (Permis-
sion) Bugs

Being one category of the significant MUBs, access control

bugs has attracted some research attention. To the best of our

knowledge, only one study, SPCON [9], which significantly

outperforms pattern-based tools like Slither [20], Oyente [21],

Maian [22], Manticore [4], and SmartCheck [23], has been

conducted. This study utilizes specification-validation methods

to mine past transactions of a contract, recover a probable ac-

cess control model, and subsequently check it against various

information flow policies to identify potential user permission-

related bugs. This section aims to compare the effectiveness

of ChatGPT and SPCON in identifying one of MUBs, access

control vulnerabilities.

To carry out a comparative analysis, we conducted ex-

periments on the same 17 CVE contracts as analyzed by

SPCON. The experiment prompt for ChatGPT was: “Please

identify inappropriate access control issues like privilege es-

calation, unrestricted function calls, and ID-related violations

vulnerabilities in the following smart contract.” The results

are presented in Table IV. Additionally, we excluded CVE-

2021-3006, labeled as “N/A2,” along with three other CVEs

labeled as “N/A1” by the SPCON author. The contract cor-

responding to CVE-2021-3006 did not include the vulnerable

function reported in [24], and we could not locate any relevant

contract site-wide. We suspect that the relevant contract was

already destructed. In the remaining 16 contracts, both SPCON

and ChatGPT successfully identified 9 bugs. Interestingly,

ChatGPT also identified two additional new bugs that were

overlooked in the CVE report and the study by Liu et al [9].

As before, ChatGPT raised 32 alarms, which were classified as

potential bugs. Concurrently, ChatGPT generated 17 incorrect

alarms, which aligns with Finding 2 in SectionIII-C.

Finding 5: ChatGPT exhibits comparable performance to

the SOTA, SPCON, in detecting access control problems.

Additionally, efforts were made to assess whether the effec-

tiveness of traditional tools like SPCON lose effectiveness as

smart contract size increases, while the advantage of ChatGPT

amplifies. In the comparative evaluation, the largest files are

only 350 and 540 lines, respectively. These sizes are relatively

insignificant when compared to contemporary decentralized

applications (DApps) and are also considerably smaller than

the projects discussed, which is 4675 as in Table I. However,

SPCON’s evaluation was hindered by its dependency on

actual transactions, which were absent due to projects not

being deployed. In conclusion, ChatGPT demonstrates better

usability with comparable performance to SPCON in detecting

MUBs, specifically access control problems.

This conclusion supports the notion that LLMs like Chat-

GPT are not only capable of providing comparable perfor-

mance to specialized tools like SPCON in detecting access

control problems but may also offer better usability and scal-

ability as the size and complexity of smart contracts increase.

This indicates a promising direction for future research and

development in the field of smart contract security analysis.

IV. RELATED WORK

Extensive research has been conducted to evaluate the

efficacy of conventional automated tools [20]–[22], [25]–[27]

relying on techniques such as symbolic execution, fuzzing, and

formal verification, with their assessment benchmarks primar-

ily targeting machine auditable bugs (MABs) like overflow,

underflow, re-entrancy, and transaction ordering dependency,

among others. Machine learning methods have also been

employed for bug detection in smart contracts, with notable

projects such as ContractWard [28], EtherGIS [29], AME-

VulDetector [23], and ESCORT [30]. While these tools have

been effective in detecting MABs, they struggle to identify

MUBs, which are more complex and challenging to detect.

Certain tools like [20]–[22], [27] have the capability to address

specific types of MUBs, such as access control bugs, which

include suicidal contracts that can be killed by anyone or

prodigal contracts that can send Ether to anyone. However,

these tools lack comprehensiveness and efficiency.

MUBs represent a category of vulnerabilities which often

involve complex logic and require a deep understanding of the

smart contract’s functionality and the underlying blockchain

platform. As a result, the identification of MUBs often

necessitates the expertise of seasoned professionals and is

1486

time-consuming, thereby impeding the progress of numerous

projects. Despite the challenges associated with MUBs, some

efforts have been made to develop automated tools for their de-

tection. For example, SPCON [9] is a specification-validation

method that mines past transactions of a contract to recover

a likely access control model, which can then be checked

against various information flow policies to identify potential

bugs related to user permissions. However, this approach has

its limitations, as it depends on real transactions to acquire

roles, which may not always be available, particularly when

the contracts are under development.

In recent years, large language models (LLMs) have

emerged as a potential solution for detecting MUBs. LLMs,

such as ChatGPT, are trained on vast amounts of text data

and have the ability to understand and generate human-

like text. This enables them to analyze smart contracts and

identify potential vulnerabilities that may elude traditional

automated tools. To the best of our knowledge, our work

is the first to evaluate ChatGPT’s capabilities concerning

machine unauditable bugs (MUBs), and to compare it with

the state-of-the-art tool, SPCON, in detecting access control

problems, providing a pioneering exploration into automating

the detection of these complex and challenging bugs with large

language models (LLMs)

V. CONCLUSION AND FUTURE WORK

In this study, we assessed ChatGPT’s capability in detecting

MUBs in smart contracts. Although the results demonstrated

a promising improvement, with an average detection rate of

15% using guidance prompts compared to a 5% detection

rate with general prompts, there is an urgent need for further

advancement to assist human auditors in tackling challenging

tasks, such as price oracle manipulation. The following are the

proposed directions for future research:

1) Prompt Optimization: Large language models (LLMs)

like ChatGPT are highly sensitive to prompts. Future

research could focus on generating effective prompts to

guide these models more efficiently. Moreover, refining

categorization methodologies for different bugs could

prevent repetitive runs of the same smart contract.

2) Domain-Specific Fine-Tuning: While ChatGPT has a

general understanding of smart contracts, it tends to

make naive mistakes. Therefore, domain-specific fine-

tuning could probably improve the detection accuracy.

3) Balancing Accuracy and Creativity: An emphasis on

accuracy might lead to higher certainty but lower cre-

ativity, limiting the model’s ability to detect novel bugs.

A careful balance between these aspects is necessary for

maximizing the potential of LLMs in this field.

In conclusion, LLMs like ChatGPT represent a promising

avenue towards automating the detection of intricate and chal-

lenging vulnerabilities, thereby reducing the burden on human

auditors. However, realizing this potential will necessitate

ongoing research and innovative advancements in the fields

of machine learning and smart contract security. This study

represents a first step in that direction, providing valuable

insights that can inform future efforts to develop more effective

and efficient automated tools for bug detection and prevention.

REFERENCES

[1] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, pp. 2–1, 2014.

[2] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” pp. 254–269, 2016.

[3] J. Chang, B. Gao, H. Xiao, and J. Sun, “scompile: Critical path
identification and analysis for smart contracts,” pp. 286–304, 2019.

[4] M. Mossberg et al., “Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts,” pp. 1186–1189, 2019.

[5] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly precise
safety verifier for ethereum smart contracts,” pp. 1678–1694, 2020.

[6] B. Gao, L. Shi, J. Li et al., “sverify: Verifying smart contracts through
lazy annotation and learning,” pp. 453–469, 2021.

[7] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs
in smart contracts,” 2023.

[8] T. Brown et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[9] Y. Liu, Y. Li, S.-W. Lin, and C. Artho, “Finding permission bugs in
smart contracts with role mining,” pp. 716–727, 2022.

[10] CVE. (2023) Cve program. Accessed: 2023-08-20. [Online]. Available:
https://www.cve.org/

[11] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum yellow paper, vol. 151, no. 2014, 2014.

[12] Code4rena. (2023) Sushi trident contest. Accessed: 2023-04-20. [On-
line]. Available: https://code4rena.com/reports/2021-09-sushitrident-2#
h-02-wrong-usage-of-positionid-in-concentratedliquiditypoolmanager

[13] Wormfol. (2023) Bug categorization. Accessed: 2023-05-26. [Online].
Available: https://github.com/Wormfol/Detect-MUBs-by-ChatGPT/
blob/main/results/bugCat.md#bug-categorization

[14] OpenAI. (2023) Chatgpt. Accessed: 2023-04-16. [Online]. Available:
https://openai.com/

[15] ——, “Gpt-4 technical report,” 2023.
[16] J. Wei et al., “Chain-of-thought prompting elicits reasoning in large

language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824–24 837, 2022.

[17] D. Zhou et al., “Least-to-most prompting enables complex reasoning in
large language models,” arXiv preprint arXiv:2205.10625, 2022.

[18] Y. Fu et al., “Complexity-based prompting for multi-step reasoning,”
arXiv preprint arXiv:2210.00720, 2022.

[19] Code4rena. (2023) Code4rena contest platform. Accessed: 2023-04-16.
[Online]. Available: https://code4rena.com/

[20] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” pp. 8–15, 2019.

[21] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” pp. 254–269, 2016.

[22] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” pp. 653–663, 2018.

[23] Z. Liu et al., “Smart contract vulnerability detection: from pure neural
network to interpretable graph feature and expert pattern fusion,” arXiv
preprint arXiv:2106.09282, 2021.

[24] CVE. (2023) Cve-2021-3006 detail. Accessed: 2023-08-20. [Online].
Available: https://nvd.nist.gov/vuln/detail/CVE-2021-3006

[25] T. Durieux et al., “Empirical review of automated analysis tools on
47,587 ethereum smart contracts,” pp. 530–541, 2020.

[26] M. Ren, Z. Yin, F. Ma et al., “Empirical evaluation of smart contract
testing: What is the best choice?” pp. 566–579, 2021.

[27] S. Tikhomirov et al., “Smartcheck: Static analysis of ethereum smart
contracts,” pp. 9–16, 2018.

[28] W. Wang et al., “Contractward: Automated vulnerability detection
models for ethereum smart contracts,” IEEE Transactions on Network
Science and Engineering, vol. 8, no. 2, pp. 1133–1144, 2020.

[29] Q. Zeng et al., “Ethergis: A vulnerability detection framework for
ethereum smart contracts based on graph learning features,” pp. 1742–
1749, 2022.

[30] C. Sendner et al., “Smarter contracts: Detecting vulnerabilities in smart
contracts with deep transfer learning.”

1487

