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Abstract—Uplift modeling is a fundamental component of
marketing effect modeling, which is commonly employed to
evaluate the effects of treatments on outcomes. Through uplift
modeling, we can identify the treatment with the greatest benefit.
On the other side, we can identify clients who are likely to make
favorable decisions in response to a certain treatment. In the
past, uplift modeling approaches relied heavily on the difference-
in-difference (DID) architecture, paired with a machine learn-
ing model as the estimation learner, while neglecting the link
and confidential information between features. We proposed
a framework based on graph neural networks that combine
causal knowledge with an estimate of uplift value. Firstly, we
presented a causal representation technique based on CATE
(conditional average treatment effect) estimation and adjacency
matrix structure learning. Secondly, we suggested a more scalable
uplift modeling framework based on graph convolution networks
for combining causal knowledge. Our findings demonstrate that
this method works effectively for predicting uplift values, with
small errors in typical simulated data, and its effectiveness has
been verified in actual industry marketing data.

Index Terms—Uplift Modeling, Graph Neural Network, Causal
Inference

I. INTRODUCTION

Uplift modeling [1] has traditionally relied on randomized

experiments, such as randomized controlled trials (RCTs) [2],

in which customers are randomly allocated to either receive

or not receive the intervention. In such instances, obtaining

an accurate and interpretable estimate from observational data

becomes critical. However, carrying out such an experiment

This work was supported by the Key R&D Program of Zhejiang
(2024C01036).

in a business context frequently results in several challenges,

including high costs in terms of time and money, uneven

intervention distribution, and selection bias in the specific

population.

Response modeling or outcome prediction uses supervised

learning models to model the relation between features and

target variables to predict response variation. Although re-

sponse modeling is typically preferable to random targets, dis-

tinguishing between treatment-induced be- behavioral changes

is often challenging. The population that should be targeted is

the one most likely to respond positively to the intervention.

As a result, a thorough knowledge of the behavioral changes

that occur after the intervention is essential. Uplift model-

ing simulates the causal effect between the intervention and

the outcomes based on response modeling. Causal inference

frameworks and machine learning models are corporated to

provide accurate forecasts and optimized performance on

intuitive metrics.

The counterfactual nature of intervention data is central

to causal inference in Rubin’s Potential Outcome Framework

(POF) [3]. This characteristic pertains to a person’s inability

to both receive and refuse intervention. This means that the ef-

fects of many therapies cannot be seen in the same person. Two

frameworks that have been extensively examined for causal

impact estimations based on this counterfactual characteristic

are the meta-learner framework [4] and the customised ma-

chine learning model-based framework [5]. The ultimate goal

is to increase the accuracy of causal impact estimation through

the use of feature engineering and validation approaches such
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as PS matching [6], weighting [7], feature representation [8],

and so on.

In the past, researchers in uplift modeling were largely

concerned with how to employ unbiased data and models in

the estimation framework. We increased the amount of data

information by defining causal knowledge and implementing

structured representation, then used a graph convolution neural

network [9] to efficiently and directionally integrate feature

neighborhood information, achieving excellent performance

in uplift modeling and prediction tasks. The following is a

description of our paper’s contribution to methodological and

empirical evaluation perspectives:

• First, we propose to use conditional average treatment

effect (CATE) as the attribute representing the causal informa-

tion of the feature and as part of uplift modeling and propose

a causal network model framework to effectively calculate it

based on knowledge distilling and double machine learning.

• Second, we propose to learn the causal diagram structure

of the data before uplift modeling and reconstruct the data

according to the learned adjacency matrix.

• Third, we propose an uplift modeling estimator based

on graph convolution neural networks, which can integrate

and characterize neighborhood feature attributes according

to the cause and effect diagram structure and improve the

performance of downstream tasks.

II. RELATED WORK

The estimation of the uplift value in uplift modeling is often

based on the Potential Outcome Framework(POF) [3]. The

individual treatment effect(ITE) can be expressed as:

ITE : τ(i) = Yi(1)− Yi(0) (1)

Shere Yi(1) and Yi(0) represents the result of the outcome

variable under the treatment condition and control condition,

respectively, for individual i, τ(i) is the ITE value.

Considering that the individual effect of treatment will

vary from individual and the high cost of marketing ex-

periments in the industry, the conditional average treatment

effect(CATE) [10] is proposed as the effect of treatment

on subgroups evaluated by the conditional average treatment

effect (CATE), which is calculated by:

CATE : τi = E [Yi(1) | Xi]− E [Yi(0) | Xi] (2)

where Xi is the feature vector for individual i.
For the estimation of CATE and ITE, the most direct method

is to make an unbiased adjustment to the regression model.

Series of meta learners represented by s-learner are designed

based on the concept, that is, train one or more models with

y as the output training target, input T and X, and get the

change of Y by changing the value of T to estimate ITE and

CATE.

τ(x) = E[Yi(1)− Yi(0)|X] = E[τi|X] (3)

Another series of methods for uplift modeling prediction

is the probability score matching (PSM) [6] method based

on randomized controlled trials (RCT) [2]. By calculating the

probability score P (t | x), each sample is given a different

treatment object according to its similarity, so for sample i,
we find sample j:

argminj dist(i, j) = |P (t | xi)− P (t | xj)| (4)

Then CATE could be calculated by:

τ̂ =
1

n

[ ∑
i:ti=1

(yi − yj) +
∑
i:ti=0

(yj − yi)

]
(5)

In addition, the industry’s research on lift modeling also

includes methods based on the Covariate Balancing Method

and Modeling Unobserved Confounder. Typical methods of

the first category include Inverse Probability of Treatment

Weighting (IPTW) [11], Entropy Balancing (EB) [12], and

Approximate Residual Balancing (ARB) [13], in which core

is how to re-assign weights to samples. The core of the second

type of method is to model the confounder. One way is to

model the instrumental variable, which is represented by the

two-stage least square (2SLS) method [14]. The first stage

is to fit the impact of the change of I on T, and the second

stage is to fit the impact of the change of T on y caused by

the change of I. The other way is to use deep learning to

represent the confounder, such as SITE [15], Dragonnet [16],

and CEVAE [17].

The past research mainly focused on adjusting and opti-

mizing the uplift value estimation model in a structured or

unstructured way. Estimation methods based on the foundation

model have shown us the importance of embedding causal

structure knowledge into the estimation process. This paper

will try to conduct data mining on features. On the one hand,

it expands the amount of information by defining and applying

causal information; on the other hand, it reconstructs structured

origin data through causal diagram structural information and

uses GCN to learn neighborhood information from unstruc-

tured reconstructed data to improve the performance of uplift

modeling using the framework of meta learner [4].

The structure of the paper is as follows. Section II reviews

the critical concepts of uplift modeling and frameworks of the

learning approach. In Section III, we introduce the methodol-

ogy of our causal knowledge framework. Section IV evaluates

these methods with both synthetic and real-world data. Finally,

Section V summarizes the findings and recommends future

research for uplift modeling applications.

III. METHODOLOGY

This section will introduce the calculation method and

architecture of graph neural networks embedded with causal

knowledge. We propose an interpretable causal graph network

representation learning framework with features as nodes.

It can expand the representation of features by node em-

bedding, mapping the originally scalar features into a high-

dimension space, and then integrating the causal information

and structural information into the graph features through
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graph convolution to achieve a more accurate estimation of

uplift value.

A. Causal Knowledge Representation

We propose a framework for computing causal knowledge

representation. We transfer knowledge through the concept of

the soft target in knowledge distillation as the estimation target

of the causal estimator. We estimate each feature’s causal

average treatment effect(CATE) and take it as the weight of

the feature based on the causal effect. This work has been

proven to obtain more information.

Fig. 1. Causal Weighting Calculation Frameworkg g g

Fig. 2. Causal Graph for Feature X1

Figure 1 shows the architecture of the causal average

treatment effect(CATE) calculation. Firstly, in the module of

knowledge distillation and representation, We will build a

knowledge distillation task for label Y(0/1), using the teacher

model(XGBoost [18], etc. as base regressor) to get the proba-

bility Ŷ as the soft label to replace Y as the target label. Sec-

ondly, in the multi-head causal weight calculation module, we

establish a causal graph for each feature as shown in Figure 2,

use the soft label Ŷ got in Module 1 as a knowledge label, and

estimate CATE in the framework of double machine learning

(DML) [19]. Since the CATE estimation of each feature is

independent, we designed a multi-head mechanism to make the

calculation more efficient. Double machine learning is a classic

estimator to estimate (heterogeneous) treatment effects when

treatment is classified and all potential confounders/controls.

DML makes the following structural equation assumptions for

the data generation process:

Y = θ(X) · T + g(X,W ) + ε E[ε | X,W ] = 0 (6)

T = f(X,W ) + η E[η | X,W ] = 0 (7)

E[η · ε | X,W ] = 0 (8)

After modeling Y and T, respectively, the estimated CATE

value θ(X) satisfies the equation:

Ỹ = θ(X) · T̃ + ε (9)

Here Ỹ is the residual of Y, T̃ is the residual of T.

Considering E[ε · η | X] = 0, the problem of estimating

θ(X) can be transformed into the following regression prob-

lem.

θ̂ = argmin
θ∈Θ

En

[
(Ỹ − θ(X) · T̃ )2

]
(10)

B. Causal Graph Structure Learning

The graph network structure contains the dataset’s prior in-

formation. The connection relationship indicates the direction

and distance of information transmission and determines the

direction and degree of information sharing and transmission

of nodes in the subsequent graph network characterization

operation.

Here, we use the classical Bayesian network structure as the

structure of the causal feature representation graph. Scoring

search is a standard method to solve the problem of Bayesian

network structure to evaluate the degree of fit between the

Bayesian network and training data and then find the optimal

Bayesian network based on the scoring function. The goal is

now to solve the following task:

argmax
G∈G

score(G,D). (11)

The scoring function introduces the inductive preference of

what kind of Bayesian network you want to obtain. Here we

use the Bayesian Information Criterion(BIC) [20] as the score

function, which approximates the Bayes Dirichlet equivalent

uniform(BDeu), sharing the critical property of decomposabil-

ity.

score(G,D) =
∑
Xi

score (Xi,Πi,D) (12)

Scorebic(g : D) = l((θ̂, g) : D)− logM

2
Dim[g] (13)

D is the given data, M is the number of training samples,

g is the given structure, Dim[g] is the number of independent

parameters of model g, θ̂ is the maximum likelihood estimate

of the parameter given the structure g and the data D.

After determining the scoring function, here we use the

hill-climbing [21] algorithm as the optimization algorithm for

the structural learning problem. The Hill-climbing algorithm

is a classical algorithm for local search based on a greedy

algorithm, starting with a candidate solution and continuing to

search in its neighborhood until there is no better solution. The

steps of the local search algorithm are described as follows:

Firstly, initialize a feasible solution X. Secondly, select a

moved solution s (x) in the neighborhood of the current

solution so that f(s(x)) < f(x), s(x) ∈ S(x). If there is

no such solution, X is the optimal solution, and the algorithm

stops. Thirdly, make x = s (x) and repeat the second step.
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C. GNN based uplift modeling

After Causal Knowledge Representation and Causal Graph

Structure Learning, we obtained more information about the

dataset and a specific relationship between features. Con-

sidering the excellent representation ability of graph neural

networks, we propose a graph neural network representation

framework based on causal graph representation, which can

integrate this information more efficiently.

GCN [9] is a multi-layer neural network that can operate

directly on the graph and induce nodes to obtain information

on neighborhood vectors based on the neighborhood attributes

of nodes. Consider a graph G = (V, e), where (‖V ‖ = n) and

E are the sets of nodes and edges, respectively. It is assumed

that each node is connected to itself, that is, (v, v) ∈ E for

any v. Let x ∈ R
n×m be a matrix containing all N nodes and

their vector features, where m is the dimension of the vector,

and each row xv ∈ R
m are the vectors of V. We introduce

the adjacency matrix A and its degree matrix D of G, where

dii =
∑

j Aij . Due to the characteristics of the self-circulation

hypothesis, the diagonal element of a is set to 1. In general,

GCN can only capture information about its neighbors through

one layer of convolution. We can integrate information about

a wider range of neighbors by stacking multiple GCN layers:

H(l+1) = σ
(
D̂− 1

2 ÂD̂− 1
2H(l)W (l)

)
(14)

Here H(l+1) and H(l) are the output and input matrices.

Â = A + I , where A is the adjacency matrix, and I is the

identity matrix. D̂ is the degree matrix of Â, D̂− 1
2 ÂD̂− 1

2

is the normalized symmetric adjacency matrix, and W (l) ∈
R

m×k is a weight matrix. σ is an activation function, e.g., a

LeakyReLU.

Here we use GCN to extract and integrate features based on

the causal neighborhood structure we learned in the previous

step. We take advantage of the feature that GCN can efficiently

fuse features according to the neighborhood structure to get

graph embedding of each sample and then perform prediction

tasks based on it. Figure 3 shows that we have expanded

the information on each feature. In addition to the value of

each feature itself, we have also expanded the information of

structural features and causal weights.

For the estimation of uplift value, we refer to the design

method of S-learner in meta learner and use our GNN-based

model as the base learner.

μ0(x) = E[Y (T = 0) | X = x] (15)

μ1(x) = E[Y (T = 1) | X = x] (16)

After μ0 and μ1 are calculated, respectively, the uplift value

for each sample can be calculated:

D̃1
i := Y 1

i − μ̂0

(
X1

i

)
(17)

D̃0
i := μ̂1

(
X0

i

)− Y 0
i (18)

Here D̃1
i and D̃0

i are the uplift values for samples in the

intervention group and control group.

Fig. 3. GNN-based uplift modeling architecture.

IV. EXPERIMENTS

A. Dataset

1) Synthetic dataset: We used a method to simulate the

generation of a dataset containing individual treatment effects,

which is available in causalml. In [5] research, it is used

as a method to provide simulated data, which is available

in Causalml. This synthetic method in the study provides

the test groundings for estimating individual treatment effects

and facilitating validation. The following is the generating

mechanism: for different choices of X-distribution Pd, there is

dimension d, noise level σ, propensity function e∗(·), baseline

primary effect b∗(·), and treatment effect function τ∗(·). The

distributions and relations are mathematically expressed in

terms:

Xi ∼ Pd (19)

εi | Xi ∼ N(0, 1) (20)

Wi | Xi ∼ Bernoulli (e∗ (Xi)) (21)

Yi = b∗ (Xi) + (Wi − 0.5) τ∗ (Xi) + σεi (22)

The generative mechanism is characterized by nuisance

components and a straightforward treatment effect func-

tion. The initial distribution is established with Xi1 ∼
Unif(0, 1)d, succeeded by the computation of the propensity

score e(Xi) = trim0.1sin(πXi1Xi2) and the treatment effect

τ (Xi) =
Xi1+Xi2

2 . The treatment variable (W) is subsequently

generated as a binary outcome. Finally, interval trimming

of the distribution is enacted using the function trim(x) =
max η,min(x, 1− η), where η represents the trimming thresh-

old.

This simulation approach is conceived as a scaled adaptation

of the Friedman function [22], wherein a baseline main effect

is determined by b∗(Xi) = sin(πXi1Xi2) + 2(Xi3 − 0.5)2 +
Xi4 + 0.5Xi5.
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2) Real-world dataset: We use the criteo uplift dataset [1]

as the evaluation of the real-world dataset, which is constructed

by collecting data from the incremental test. It randomly

divides the people into two categories, whether it is advertised

or not. The criteo uplift dataset has 25 million rows, each rep-

resenting a user with 11 characteristics, a treatment indicator,

and two tags (click and conversion). Here we use conversion

as the tag we focus on in uplift estimation. Figure 4 shows

the results after learning the Bayesian network structure of the

dataset.

Fig. 4. Correlation network between confounders, treatment, and outcome
from the real-world dataset, CRITEO

B. Result

1) synthetic dataset: In this case, the actual causal effect

of features can be calculated easily because the datasets are

produced with a certain mechanism The absolute loss (Abs)

is adopted to measure the deviation between the actual causal

effect and the estimated causal effect. As for the prediction

accuracy, the mean squared error (MSE) is adopted. The

proposed method has been compared to traditional models like

linear regression (LR), SVR, and XGBoost.

Fig. 5. Mean squared error for y-prediction accuracy of base methods and
ours with the numbers of confounders are 5, 9, and 20, respectively.

Figure 5 shows that the origin GNN-based model performs

similarly to traditional models in the traditional regression

task, while the GNN-based model performs much better when

combined with the causal weighting. As for uplift modeling

estimation, as shown in Figure 6, causal weighting combined

architecture has a much more apparent effect. Before combin-

ing causal weighting information, GNN based model is slightly

Fig. 6. Absolute error of ITE of base methods and ours with the numbers of
confounders are 5, 9 and 20, respectively.

TABLE I
AUUC FOR UPLIFTING EVALUATION AND MSE FOR Y-PREDICTION OF

BASELINE METHODS AND PROPOSED METHOD

Model AUUC MSE

LR 0.4980 0.0026
SVR 0.5475 0.0037
XGBoost 0.8756 0.0025
GCN 0.5443 0.0028
GCN (Causal Weighting) 0.8807 5e-06

better than LR and SVR in the estimation of uplift value but

worse than xgboost while achieving a very accurate result

when adopting the causal weighting combined architecture.

Another result is that GNN based model can have a much more

stable performance when the number of confounders increases,

which means that it can have a much more robust performance

when facing more complex situations.

2) Real-world dataset: In a real-world dataset, the actual

causal effect of treatment remains unknown, leading to the

abovementioned indicators being inapplicable. As a result,

Area Under Uplift Curve (AUUC) is adopted to measure the

performance of an uplifting model on the real-world dataset.

AUUC can be calculated as follows:

AUUC(f) =

∫ 1

0

V (f, x)dx ≈
n∑

k=1

V (f, k) (23)

whereV (f, k) =
1

|T |
∑

i∈f(D,k)

y1i [ti=1] −
1

|C|
∑

j∈f(D,k)

y1j [tj=0]

(24)

Here f(D, k) can be the k first samples of the dataset when

ordered by the prediction of the model f , |T | is the number

of samples in the treatment group(t=1), and |C| is the number

of samples in the control group(t=0).

For certain causal relationships, the higher the AUUC is,

the better the uplifting model performs. The AUUC of the

baseline models and ours are listed in Table I.

Table I shows that when estimating the uplift value in

the real-world dataset, although origin GNN has a similar

performance with LR and SVR, it has a better performance

than XGBoost when with the causal weighting combined

architecture.
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V. CONCLUSION AND FUTURE WORK

In this work, we investigated how to describe causal infor-

mation in uplift modeling (add conditional average treatment

effect (CATE) and build an adjacency matrix using Bayesian

network structure learning). In addition, we addressed how to

incorporate this causal information into uplift estimations by

proposing a framework for uplift modeling that is based on

graph neural networks.
Experiments on simulated and real-world datasets reveal

that while the origin graph convolutional neural network

performs comparably to conventional approaches when di-

rectly predicting uplift values, when paired with causal neigh-

bourhood features and causal representation information, it

demonstrates exceptional performance in both the prediction

job and the uplift estimation task of the target, owing to the

GCN’s excellent neighbourhood learning features.
It is worthwhile to investigate more methods of characteris-

ing causal knowledge in the future. Weighted adjacent matri-

ces might be seen as a means of guiding graph convolutional

neural networks to provide accurate data. Alternatively, it

is equally intriguing to investigate the size of the receptive

domain of neighbourhood features. A wider receptive domain

denotes more information, which might aid us in enhancing

the performance of this job in downstream prediction.
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