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Abstract—The learning-based underwater image enhancement,
which is suitable for batch processing, is a pivotal research
direction in underwater image processing. Extensive paired image
data are required in existing learning-based methods, which
necessitate considerable preprocessing and hinder the application
of these methods. To address these limitations, we propose a
semi-supervised approach called UWM-Net: firstly, we use a
compact dataset of underwater image pairs to train the Mixture
Density Network (MDN) with an underwater scene setting;
subsequently, U-Net can learn underwater image enhancement
more efficiently. The MDN can transform standard images into
underwater scenes, reducing the reliance on paired data and
making much smaller training datasets. In experimental studies,
UWM-Net using only 18 pairs of underwater image data achieves
highly competitive results in terms of 3 metrics compared with
advanced models.

Index Terms—semi-supervised learning, mixture density net-
work, reduced dataset, color distortion

I. INTRODUCTION

Underwater images encounter unique issues (e.g., poor

contrast, skewed color balance, light attenuation, and blurred

detail) due to the scattering and absorption of light in aquatic

environments [1]. Therefore, underwater image enhancement

(UIE) plays an important role in underwater image processing.

Conventional methods, such as histogram equalization [2],

gamma correction [3], and retinex theory [4] [5], have been

developed to mitigate poor visibility and color distortion.

Recent developments shift towards deep-learning-based meth-

ods, offering more sophisticated and accurate solutions. Novel

approaches, including leveraging local color distributions [6]

and semantic-aware knowledge guidance [7], are introduced

to UIE. Emerging techniques like zero-reference learning [8]

and unsupervised learning [9] show promise for UIE, as they

can enhance image quality with fewer labeled datasets.
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However, existing methods depend on large-scale and paired

data for training. Obtaining these datasets is challenging and

costly, restricting the generalization of the model to diverse

underwater conditions [10]. To fill this gap, we propose an

Underwater Mixture Density Network (UWM-Net), combin-

ing deep learning techniques with advanced image processing

methods to improve the performance of UIE. UWM-Net em-

ploys a semi-supervised framework with the Mixture Density

Network (MDN) [11], requiring a smaller size of paired

data without performance deterioration and overcoming the

scarcity of high-quality underwater datasets. In the experimen-

tal studies, UWM-Net effectively enhances underwater images,

improving clarity and color accuracy. Our main contributions

are summarized as follows:

• We propose UWM-Net, which only requires a small size

of training datasets and effectively alleviates the shortage

of underwater images.

• We adapt MDN to the light attenuation characteristics of

underwater images.

• The experimental results indicate the images enhanced

by UWM-Net improve the Structural Similarity Index

Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR)

by about 25% and 50%, respectively.

II. PROPOSED METHOD

UWM-Net first employs the MDN pre-trained on a minimal

set of paired underwater images, facilitating the initial trans-

formation of standard images into synthetic underwater con-

ditions. Then, a U-Net architecture [12] is conducted for UIE

tasks, utilizing the transformed images as an expanded training

set. The MDN, a low-light image enhancement algorithm, is

an essential component. Inspired by Dimma [13], it serves

as a generative model to simulate underwater image features.

This simulation creates a bridge between limited real-world

underwater image pairs and a more expansive training regime

for the U-Net model. Consequently, UWM-Net can efficiently

learn to correct color distortions, improve image clarity, and

adapt to a variety of underwater conditions.
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Fig. 1: The overall framework of UWM-Net.

A. MDN

The MDN implements a novel approach to image process-

ing, commencing with the application of Retinex theory for

image decomposition. This procedure decomposes an input

image into two separate features: reflectance, which suggests

the color information (independent of lighting conditions),

and luminance, which represents the brightness aspect of the

image. Such decomposition is essential for isolating the color

distortions induced by underwater environments. Thereby, the

MDN employs a series of convolutional layers, each followed

by a non-linear activation function, to process the decomposed

image. The network architecture, comprising a sequence of

Conv2D and ReLU layers, can capture the intricate pat-

terns and nuances necessary for the subsequent reconstruction

phase. The network utilizes the estimated Gaussian mixture

model parameters to reconstruct the color channels of the

underwater image. And we achieve the regularization by

multiplying it by a random adjustment factor.

The mathematical formulation for optimizing the MDN

parameters (encompassing the weights and biases of the MDN

network), denoted as θ, is achieved by:

θ∗ = arg min
θ

∑
n

∑
i,j,k

−
log p

(
r
(n)
D,i,j,k | x(n)

i,j ; θ
)

L
(n)
i,j

, (1)

where r
(n)
D,i,j,k represents the pixel intensity of the kth color

channel at position (i, j) in the nth image of the transformed

(underwater-like) dataset; x
(n)
i,j denotes the input feature vector

for the corresponding pixel, extracted from the decomposed

components of the image. Based on the structure of Dimma

[13], Our formula incorporates a normalization term (i.e.,
L

(n)
i,j ) within the equation. L

(n)
i,j is derived from the luminance

component of the original image, representing the normalized

luminance factor for the corresponding pixel. It adjusts the loss

weight of each pixel to compensate for typical underwater

lighting conditions such that the variation of regions distant

from the camera can be effectively captured.

B. U-Net

The U-Net architecture, renowned for its efficacy in image

segmentation tasks, is used in UWM-Net to enhance images

together with the MDN. The U-Net model of UWM-Net

employs a series of convolutional and up-convolutional layers

to process input images, aiming to recover the color and

clarity commonly degraded in underwater settings. Besides,

the network architecture includes attention mechanisms to

focus on important features, further enhancing the ability to

restore precise details and true colors. The training of the

network considers multiple loss functions, including Mean

Squared Error (MSE), Structural Similarity Index Measure

(SSIM) [14], and a novel color histogram loss. Specifically,

the training loss Ltotal is a weighted sum of the three loss

components:

Ltotal = ωMSE · LMSE + ωSSIM · LSSIM + ωhist · Lhist, (2)

where ωMSE, ωSSIM, and ωhist are the weights assigned to

the MSE, SSIM, and color histogram loss, respectively. We

choose the following weights to balance the contribution of

each component: ωMSE = 1, ωSSIM = 0.05, and ωhist = 1.

1) MSE Loss: The MSE loss is defined as the average of

the squares of the differences between the predicted and target

pixel values, which is mathematically represented as:

LMSE =
1

N

N∑
i=1

(
Yi − Ŷi

)2

, (3)
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where Yi is the ground truth, Ŷi is the prediction for the ith
pixel, and N denotes the total number of pixels. This loss

emphasizes pixel-level accuracy and maintains image integrity.

2) SSIM Loss: The SSIM loss evaluates the perceived

quality of the predicted image by comparing its structural

similarity with the target image. It is defined as:

LSSIM = 1− SSIM(Y, Ŷ ), (4)

where SSIM(Y, Ŷ ) is the structural similarity metric between

the target image Y and the predicted image Ŷ . The SSIM

metric is defined as:

SSIM(Y, Ŷ ) =
(2μY μŶ + C1)(2σY Ŷ + C2)

(μ2
Y + μ2

Ŷ
+ C1)(σ2

Y + σ2
Ŷ

+ C2)
, (5)

where μY , μŶ are the average pixel values; σ2
Y , σ2

Ŷ
are the

variances of the target image Y and the predicted image Ŷ
respectively; σY Ŷ is the covariance of Y and Ŷ ; C1 and C2

are constants to stabilize the division.

3) Color Histogram Loss: The color histogram loss aims to

align the color distributions between the predicted and target

images. It calculates the L1 distance between their normalized

color histograms:

Lhist =
1

C

C∑
c=1

∣∣∣∣∣
histc(Ŷ ,B)∑B
b=1 histc(Ŷ ,B)

− histc(Y,B)∑B
b=1 histc(Y,B)

∣∣∣∣∣ , (6)

where C is the number of color channels, B denotes the

number of histogram bins, and histc(Y,B) represents the

histogram of the c-th channel.

C. Fine-Tune

In the final phase of UWM-Net’s procedure, we fine-tune

the U-Net network to refine the model’s performance in real-

world underwater scenarios. For this purpose, the same U-Net

architecture, inherited from the previous phase, is employed.

However, instead of relying on the MDN-generated synthetic

images, the network is fine-tuned using a small but highly

representative dataset comprising the initial 10 pairs of real-

world underwater images. These images, which were instru-

mental in the initial training of the MDN, now serve as a more

authentic and challenging dataset for fine-tuning the U-Net.

This method ensures that the network proficiently manages

the simulated underwater conditions produced by the MDN

while also being finely tuned to the details and complexities

of real-world underwater environments.

III. EXPERIMENTS

A. Experiment Settings

Our experiments run on a hardware platform consisting of

an Intel(R) Xeon(R) Gold 5320 CPU @ 2.20GHz and an

NVIDIA A30 GPU with 32GB memory. We train our MDN

model using the Adam optimizer with a learning rate of 1e-3

and weight decay of 5e-4 for 1000 epochs. Then we train U-

Net employing the Adam optimizer with a cosine annealing

scheduler and a learning rate adjusted to 5e-4 for 2000 epochs.

We utilize the Underwater Image Enhancement Benchmark

(UIEB) [15] and the MixHQ dataset [13] as training datasets

for UWM-Net. From the UIEB dataset, we select 18 pairs of

images: 10 for training, 4 for validation, and 4 for testing. The

images across the dataset are standardized to a resolution of

256x256 pixels with three color channels.
To evaluate the models, we adopt two full-reference metrics:

Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-

ity Index Measure (SSIM) [14]. These metrics are widely

recognized for their effectiveness in assessing the quality of

enhanced images against their original counterparts. Addition-

ally, we also include a no-reference image quality assessment

metric called the Underwater Color Image Quality Evaluation

(UCIQE) [16]. This metric offers a comprehensive evaluation

of image quality by focusing on crucial aspects such as

chromaticity, contrast, and sharpness, which are particularly

susceptible to degradation in underwater imaging conditions.

B. Comparison with Representative Models
We compare our methods with some advanced models, and

comparison is shown in Fig. 2. Results are summarized in

Table I. UWM-Net consistently shows superiority, achieving

top scores in terms of the SSIM and PSNR metrics, thereby

confirming its effectiveness in restoring image quality. It

also exhibits competitive UCIQE metric values, demonstrating

its robustness across different underwater scenarios. These

results highlight the model’s proficiency in learning pixel-level

improvements, catering to the intricate details necessary for

high-fidelity underwater image reconstruction.

(a) Bayesian Retinex [5] (b) Fusion [2] (c) MLLE [6]

(d) UGAN [17] (e) Ours (f) Ground Truth

Fig. 2: The qualitative comparison shows that our methods

provide more details and a better color enhancement.

C. Ablation Study
In the ablation study, shown in Fig. 3, we systematically

investigate the contribution of each component in UWM-Net.

The study compares the following results: raw images, results

without applying color histogram loss, results without the fine-

tuning step, and the final enhanced images after fine-tuning
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TABLE I: Comparison results of existing methods. “bold” =

the best score; “underlined” = the second-best score.

Image SSIM PSNR UCIQE
Raw N/A N/A 0.4301
Bayesian Retinex 0.7552 16.42 0.7441
Fusion 0.7760 15.59 0.6722
MLLE 0.6158 13.81 2.7160
UGAN 0.5563 16.32 0.4881
UWM-Net 0.9265 23.75 0.7655
Reference N/A N/A 1.1119

(i.e., the results of UWM-Net). Results are shown in Table II.

We can find that both the color histogram loss and the fine-

tuning step have positive effects on UWM-Net. Incorporating

color histogram loss significantly improves color correction

and balance, as demonstrated by UCIQE metrics. Furthermore,

the fine-tuning phase leverages limited underwater images

to further refine the enhancement by sharpening details and

enriching colors. Although SSIM marginally decreases, the

PSNR score shows a substantial improvement.

(a) (b) (c) (d) (e)

Fig. 3: Illustrations of the ablation study on the color histogram

loss and fine-tuning step, where (a) Raw, (b) w/o Histogram

Loss, (c) w/o Fine-Tuning, (d) UWM-Net, (e) Reference.

TABLE II: Ablation study on key components of UWM-Net.

“bold” = the best score; “underlined” = the second-best score.

Condition SSIM PSNR UCIQE
Reference N/A N/A 0.7292
w/o Histogram Loss 0.8886 21.34 0.5613
w/o Fine-Tuning 0.9210 24.32 0.5841
UWM-Net 0.9197 24.91 0.6461

IV. CONCLUSIONS

This study addresses the requirement for effective UIE

with limited paired data. The proposed UWM-Net leverages

a combination of the MDN and the modified U-Net, enabling

significant improvements in image quality with limited training

data (18 pairs of underwater images). Experimental results

validate the efficiency of our method. Particularly, significantly

high SSIM and PSNR scores have been achieved by our

method, showing superior clarity and fidelity of enhanced

underwater images.

Note that the UCIQE metric value obtained by UWM-

Net only secures the second place. In the future, we will

concentrate on refining the color correction capability of

UWM-Net to achieve greater adaptability and accuracy across

diverse underwater conditions.
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