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Abstract— The development of a robotic system aimed at 
enhancing the cable binding process for Floating Production 
Storage Offloading (FPSO) vessels addresses critical challenges 
within the labour-intensive shipbuilding industry. The 
proposed robotic system incorporates computer vision 
technology which has the ability to detect stainless steel buckles 
and relay their precise locations to improve the efficiency and 
effectiveness of the overall process. This study divides the 
entire process into three steps: object detection, key point 
prediction, and pose estimation. We have leveraged You Only 
Look Once (YOLOv8) to detect and predict the key points of 
the stainless steel buckles. The study has successfully tackled a 
significant challenge in machine vision, namely detecting the 
shiny metal parts of the buckle against a similarly shiny 
background. Furthermore, we validated the effectiveness of 
our computer vision approach by adopting a training approach 
that combines real and synthetic data, which mitigates 
overfitting issues during neural network training. 

Keywords—RGB image, robotics, neural network, deep 
learning, machine vision. 

I. INTRODUCTION 

Computer vision technology has advanced significantly 
in recent years, reaching a level of maturity that enables it to 
effectively handle various aspects of metal detection across 
industrial applications. Automated inspection systems 
leveraging computer vision are now commonplace in the 
manufacturing industry, offering both high speed and 
accuracy. Vision-based object detection has particularly 
matured, with deep learning models like convolutional neural 
networks (CNNs) demonstrating impressive accuracy in 
detecting objects, including metallic ones. These models 
leverage sophisticated algorithms to analyze visual data and 
identify objects with remarkable precision [1-3]. As a result, 
computer vision technology has become an invaluable tool in 
manufacturing, enabling efficient and reliable inspection 
processes. By automating tasks that were traditionally 
performed manually, it enhances productivity, reduces errors, 
and ensures consistent quality control [4, 5]. 

Today, industrial metal parts are essential components in 
a wide array of products, inevitably playing a crucial role in 
various industries. Consequently, our cable binding robotic 
system project faces the challenge of accurately recognizing, 
locating, and estimating the pose of stainless steel buckles 
(buckle), as depicted in Figure 1, during the cable binding 
process. These challenges stem from the distinctive 
properties of metal surfaces [6-10]. While some pose 
estimation methods rely on depth information obtained by 

actively projecting coded patterns, this approach proves 
ineffective for shiny metal parts. The reflective nature of 
metal surfaces can distort or obscure the projected patterns, 
rendering them misleading or undetectable. Therefore, it's 
imperative to devise a strategy that doesn't solely rely on 
RGB images to overcome this hurdle. 

Traditional cable binding methods typically involve 
manual operation using conventional hand-held tools. These 
methods often require workers to manually tighten and cut 
metal bands to secure cables. Among these tools, the steel 
banding tool [18] serves as a popular alternative for 
tightening and cutting steel bands effectively. In Figure 2, we 
illustrate some of the existing individual tools utilized in 
manual cable binding processes, including a wire cutter for 
band cutting post-binding, a T-slot tool aiding in steel band 
tightening, and a hammer used to secure the band onto the 
buckle by stamping. 

 

Fig. 1. Overview of the stainless steel buckle (buckle) 

Currently, the cable binding process on-site involves 
manual labour, with workers manually securing cables to 
cable ladders present on every ship vessel. These cable 
ladders serve as elevated structures along which cables are 
laid down and fastened using steel bands and buckles. To 
ensure the secure attachment of cables onto cable ladders, 
particularly in shipbuilding related to the oil and gas industry, 
steel bands are utilized for binding purposes. Figure 2 
illustrates the cable binding process. The cable binding 
process is highly labour-intensive, with workers typically 
able to complete only around a hundred meters of cable 
binding per day. This process involves securing multiple 
cable bundles across the width of the cable ladder. 
Specifically, every alternate rung of the cable ladder is 
secured using a steel band and a buckle. This labourious 
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process extends over considerable lengths and heights 
onboard the vessel. 

 

Fig. 2. Overview of cable binding process 

Another challenge in the cable binding process arises 
from its overhead execution, necessitating the erection of 
scaffolding for safety compliance. This not only adds to the 
logistical complexity but also entails temporary halting of 
ground-level operations until the binding is finished. Given 
the arduous and labour-intensive nature of this conventional 
approach, Figure 3 illustrates the implementation of a robotic 
system integrated with computer vision technology. This 
advancement is anticipated to markedly diminish both the 
expended man-hours and the overall costs associated with 
the process. 

 

Fig. 3. Workspace area to be viewed by webcam 

This robotic system is engineered with five manipulators 
tailored to operate effectively within constrained spaces. 
Given that the application entails multiple manipulators 
equipped with individual end effectors, they operate 
sequentially to execute the cable binding process step by step. 
The analytical kinematics of this robotic system integrate 
counter and digital signals to communicate with the 
controller and motor drivers, facilitating precise 
manipulation of the manipulators and end-of-arm tooling to 
execute specific tasks at predefined positions. Upon 
receiving signals from the controller, the manipulator's motor 
drive extends its tooling arm outward to perform designated 
tasks such as grasping the buckle and steel band, threading, 
cutting, and tightening the band. To enhance these tasks, a 
computer vision system conducts a final verification of the 
buckle position, alerting the operator via the computer 
interface to proceed to the next cable binding process once 
confirmed. 

In the context of addressing the challenges posed by 
estimating the pose of shiny metal parts, a similar approach 
which is the current state of the art is described in [11], This 
approach involves leveraging advanced computer vision 
techniques and deep learning methodologies, such as the 
Mask R-CNN (Region-based Convolutional Neural 
Network), specifically tailored for object recognition and 
pose estimation using red, green and blue (RGB) images. 
Currently, You Only Look Once (YOLOv8) is a popular 
deep learning model for object detection tasks [12-17]. 
Although YOLOv8 is renowned for its effectiveness in 
object detection tasks, it has not been tested to accurately 
recognize, locate, and estimate the pose of shiny metal parts. 
Hence its overall performance and reliability in real-world 
applications is uncertain. 

Although computer vision for metal detection has made 
significant strides in various industrial applications, the 
efficacy of vision-based metal detection remains contingent 
upon several factors, each requiring validation to enhance the 
reliability of our proposed algorithms for buckle detection. 
The reflective and glossy characteristics of metal surfaces 
present challenges due to specular reflections. Addressing 
such instances may necessitate the utilization of advanced 
algorithms, potentially integrating visual data with analytical 
kinematics. Additionally, the buckle often appears partially 
obscured or distorted due to obstructed views or shadows on 
the surface, rendering it invisible in captured images. This 
underscores the need for further refinement and adaptation of 
detection methods to accommodate such scenarios. 
Moreover, examining all the geometric aspects of the buckle 
proves excessively labourious, requiring adjustments to both 
light direction and camera angle. To tackle this challenge, we 
will conduct an investigation aimed at testing the detection 
process without the need for altering light illumination or 
camera view. 

In computer vision, estimating the pose of shiny metal 
parts presents challenges due to potential inter-reflection and 
overlapping. Furthermore, labeling metal parts for object 
detection is prohibited. Moreover, the similarity in material 
between the metal parts and the shiny background reduces 
visibility for detection. Recently, deep learning, particularly 
Mask R-CNN (MRCNN), has demonstrated effectiveness in 
addressing these challenges by accurately estimating the pose 
of texture-less shiny metal parts [11]. While MRCNN stands 
as the current state-of-the-art solution for this application, 
YOLO offers a compelling alternative. YOLO is a single-
stage object detection system known for its superior speed, 
ease of implementation, and compatibility with less powerful 
hardware. Unlike multi-stage approaches like MRCNN, 
YOLO predicts bounding boxes and class probabilities 
directly in a single forward pass through the neural network, 
making it an efficient choice for real-time applications with 
resource constraints [12-17]. 

Given that YOLO hasn't been specifically designed to 
detect objects like metal parts against a shiny metal 
background, this paper will focus on developing vision 
control algorithms by implementing YOLO in this specific 
scenario. The study outlined in the paper will involve 
iterative training of the YOLO model to enhance its accuracy 
in detecting shiny stainless steel buckles, aiming to achieve 
results similar to the current state-of-the-art methods. 

The upcoming test will showcase the application of 
visual control on the cable binding robotic system through National University of Singapore (NUS) and Sembcorp Marine Ltd. (SCM) 
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the utilization of generated training datasets and the 
implementation of the YOLOv8 platform to enhance 
computer vision capabilities for buckle detection in this 
context. This will be detailed in the subsequent section. In 
this research project, the key contributions of this paper are 
as follows: 

1. Development of a custom trained dataset to evaluate 
the robustness of integrating YOLOv8 for buckle 
detection across various scenarios outlined earlier. 

2. Experimental validation of the trained custom datasets 
through a comparison between datasets generated from 
photographs and those derived from 3D computer-aided 
design (CAD) models. 

3. Demonstration of real-time video processing tests, 
validated through dataset comparisons. 

The paper's organization is structured as follows. Section 
2 provides an overview of computer vision control, 
experimental setup, and dataset training methods. Test 
scenarios are elucidated in Section 3. Section 4 presents 
simulation results along with discussions on all test scenarios. 
Finally, Section 5 offers conclusions and outlines potential 
avenues for future research. 

II. METHODOLOGY WITH SYSTEM OVERVIEW 

A. Overall System Configuration 
In the configuration of this robotic system, the analytical 

kinematics supports the utilization of a joint space control 
scheme. This choice simplifies algorithmic complexity 
within the control architecture and facilitates swift operation 
for preplanned motion control. Leveraging computer vision 
enables the robotic arm's joint space to navigate within the 
constraints of the workspace. Given the critical role of 
computer vision in detecting the buckle's position within the 
kinematic model, its implementation will undergo testing 
across various scenarios anticipated during operation. These 
tests aim to demonstrate the system's reliability under 
realistic conditions. 

Computer vision serves as the automated feedback 
control mechanism for the robot, operating based on the 
comparison between the input image and a reference image. 
Illustrated in Figure 4, this approach differs from operational 
space control, where inverse kinematics are embedded within 
the feedback loop. Here, the process involves solving the 
kinematics model initially to derive the desired input joint 
space, qd, which is then controlled based on the actual 
tracked value of the joint output, q. However, in general 
manipulator applications, this method may result in 
inaccurate output in the operational space, xe, due to 
structural uncertainty, as the feedback remains independent 
of xe. 

 

Fig. 4. Control structure of the computer vision control system 

B. Configuration of Set up Experiment 

 

Fig. 5. Overview of the Set-up Experiment in Laboratory 

In our laboratory experiment setup, we utilize a stand, a 
Logitech C615 HD webcam, a metal tray, and a desk lamp 
with adjustable lighting. Images of buckles are obtained and 
prepared by capturing them from various perspectives, 
achieved by adjusting the stand's height. To simulate 
different outdoor lighting conditions, we vary the lighting 
intensity from the desk lamp. Additionally, we modify the 
background for the buckle in the captured images, 
incorporating both a shiny stainless steel surface and a dark 
wooden surface. These adjustments aim to provide a 
comprehensive dataset for testing the reliability of our 
computer vision system under diverse environmental 
conditions. 

C. Components Design with methods 
For YOLOv8 model training, we curated a specialized 

dataset divided into training and validation sets. This dataset 
comprises real-world images captured under diverse 
backgrounds and lighting conditions, along with synthetic 
images generated using Blender software. Leveraging 
Blender's 3D rendering engine, we created images of buckles 
positioned at different angles and under various lighting 
conditions. Subsequently, we trained the YOLOv8 model, 
which offers flexibility in parameter sizes, by fine-tuning 
initial and final learning rates, as well as parameters like 
intersection over union (IoU). This iterative process 
culminated in a neural network model and optimized 
parameters capable of accurately predicting buckle positions 
and key points. 

This strategy aimed to overcome limitations associated 
with insufficient original data and to counteract potential 
overfitting issues during image training. For the real data 
subset, we utilized a total of 180 images, with 145 allocated 
for the training set and 35 for validation purposes. 
Conversely, the synthetic data subset consisted of 1000 
images, segmented into 790 for training and 210 for 
validation. This hybrid training approach enabled us to 
leverage the strengths of both real and synthetic datasets, 
enhancing the robustness and generalization capabilities of 
the trained model. 

III. OBJECT DETECTIONS WITH TEST SCENARIOS 

In our test scenarios, we employ the YOLOv8 network 
for object detection, recognizing the challenges inherent in 
traditional metal part segmentation. We utilize CSPDarkNet 

Logitech C615 

 HD webcam 

Metal Tray 

Buckle 

Stand 

Desk Lamp 
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as the backbone for feature extraction, enhancing the 
network's capability to discern intricate details. We utilize 
the synthetic data to train the metal part detection network. 
Figure 6 showcases a 3D model of a buckle, representing the 
object of interest in our detection tasks. 

 

Fig. 6. 3D-Max model in the virtual 3D environment 

Synthetic data generation should encompass a range of 
conditions, including variations in background, lighting, and 
reflectance effects, as detailed in reference [19]. Blender, a 
rendering engine, is adept at simulating such conditions. As 
depicted in Figure 7, this software renders synthetic data by 
situating the 3D-Max model within a virtual 3D environment 
governed by physical conditions. Figure 8 illustrates the 
setup of the image generator. On the left side, the diagram 
depicts the configured virtual scene environment. In the 
middle, a Blender script generates synthetic images of 
buckles with diverse angles, positions, and lighting 
intensities. On the right side, options for the surface material 
of the buckles in the rendered images are presented. 

 

Fig. 7. Blender program interface 

In our synthetic data generation process, we incorporate 
diverse real-world scenes as backgrounds within a virtual 
environment. By positioning the 3D-max model in various 
orientations, we generate a series of images depicting metal 
parts against different backgrounds and poses. Both Figure 8 
and Figure 9 showcase rendered synthetic images featuring 
distinct backgrounds and illumination conditions, 
representing two scenarios for buckle detection. 

Our real-world environment includes metal trays and 
darkened wooden boards. YOLOv8, classified as a one-stage 
algorithm, utilizes a single convolutional neural network to 
directly predict the classes and locations of various targets. 
Compared to previous iterations, YOLOv8 is faster and more 
accurate, enhancing the efficiency and precision of our 
detection tasks. 

To generate synthetic images of buckles, we initially 
created a 3D model of a buckle using 3D-Max software and 
subsequently imported this model into Blender. Leveraging 
Blender's Python scripting capabilities, we synthesized 
scenes featuring multiple instances of the buckle model. 
Within these scenes, we incorporated multiple light sources 
and varied camera positions to capture different perspectives. 
By rendering the buckle surface with metallic properties, it 
reflected light and cast shadows in the background. In one 
synthetic image, we set the number of synthesized buckles to 
10. To mimic laboratory fluorescent lighting conditions, we 
configured a panel light source positioned above the scene at 
a specified height along the Z-axis. 

To derive the 2D bounding boxes and keypoint 
information from the synthetic images, we initially extracted 
the 3D keypoint data for all buckles within the scene. These 
3D keypoints were then projected from the 3D space onto the 
2D coordinates of the camera's plane, resulting in 
corresponding pixel positions along the x and y axes in the 
synthetic images. we then exported a JSON file from Blender 
containing the transformed 2D coordinates of all buckle 
keypoints. There are 12 keypoints previously chosen, 
annotating them in the synthetic images to prepare the data 
for future image training. Subsequently, we utilized a 
program to determine the maximum and minimum values in 
both the x and y directions, enabling the drawing of 
bounding boxes around the detected buckles. During the 
generation of synthetic images, the buckle's surface nodes 
were configured to use principled (bidirectional scattering 
distribution function) BSDF, with a specular value of 0.5, 
roughness of 0.5, and Sheen Tint of 0.5. These settings 
ensured realistic rendering of the buckles' surface properties. 

 

Fig. 8. Synthesis picture with a metal background 

 

Fig. 9. Synthesis picture with a dark wooden background 

Script 

Virtual Scene Surface Material 
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In capturing real data, we employed a Logitech C615 
Webcam with a picture resolution of 1024×768. The photo 
shoots were conducted against backgrounds comprising a 
metal plate and a darkened wooden board. To accommodate 
the recognition of both large and small buckles, we varied 
the height of the photo shoots to 10cm and 30cm. The real 
photos were imported into the Labelme software, where we 
manually annotated the positions of different buckles within 
the images. This annotation process facilitated the creation of 
a labeled dataset, essential for training and validating our 
computer vision models. 

IV. RESULTS 

During the experiment, we trained the YOLOv8 model 
using a hybrid dataset comprising both real and synthetic 
images. Multiple models were trained concurrently with 
varying parameter scales. Table 1 shows the model with 5 
different parameter configurations, where Ir0 is the initial 
learning rate. Irf stands for the final learning rate. Iou 
represents the intersection over Union threshold, measuring 
the overlap between the predicted bounding box and the 
ground truth. The training employed the Stochastic Gradient 
Descent (SGD) optimizer. “Close_mosaic=0” disable mosaic 
augmentation for final epochs. “Dropout=0.0” means using 
dropout regularization. 

Table I  
Model and typical training parameters in experiment 

No. Model Version Parameters 

1 YOLOv8s 
lr0=0.01, lrf=0.01, iou=0.7, 

optimizer=SGD, close_mosaic=0, 

dropout=0.0, batch_size=4, epoch=30 

2 YOLOv8n 

3 YOLOv8m 

4 YOLOv8l 

5 YOLOv8x 

 

Table 2 presents the experimental results, encompassing 
Precision, Recall, mAP50, and mAP50-95 metrics for the 
five model versions evaluated. Analysis of the results reveals 
that as the number of model parameters and complexity 
increase, both detection precision and recall exhibit gradual 
improvements, although the increase in mAP50 is less 
pronounced. Notably, the Precision metric for YOLOv8l 
reaches 0.995, meeting the requirements of our work. 

Table II 
Results in metrics of the experiments  

No Model 
Version Precision Recall mAP50 mAP50-95 

1 YOLOv8s 0.989 0.987 0.993 0.711 

2 YOLOv8n 0.980 0.975 0.993 0.690 

3 YOLO v8m 0.987 0.988 0.994 0.738 

4 YOLOv8l 0.995 0.993 0.994 0.759 

5 YOLOv8x 0.992 0.996 0.992 0.752 

The YOLOv8 model incorporates several components 

(box_loss, kobj_loss, cls_loss, dfl_loss, and pose_loss) in its 

loss function, each serving a specific purpose. Figure 10 

illustrates the curves depicting the changes in pose_loss over 

the course of training steps. Analysis of these curves reveals 

consistent decreases in box_loss, kobj_loss, cls_loss, and 

dfl_loss as the number of iterations increases, stabilizing at 

certain values. However, the pose_loss curve exhibits 

continual fluctuations, indicating that the prediction of 

keypoints is not entirely satisfactory. This observation 

suggests a need for further refinement to enhance model 

performance. 

 

Fig. 10. Pose_loss figure in training set 

 

Fig. 11. Predict picture in validation set 

Figure 11 displays predicted images from the validation 

set, while Figure 12 showcases real-time buckle detection in 

a video. The images from the validation set indicate that the 

trained model accurately predicts the positions of both large 

and small buckles, even when they exhibit strong reflections 

or partial overlaps. However, in synthetic images, although 

the bounding box positions are highly accurate, the 

distribution of predicted keypoints around the buckles is not 

satisfactory, indicating a lack of accuracy in keypoint 

prediction. Upon analyzing real-time videos using the final 

trained model, it was observed that the model can predict 

buckle positions in real-time. However, the prediction of 

keypoints on the buckles is inaccurate and has not 

converged well. 
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Fig. 12. Real-time buckle video detection 

V. DISCUSSION AND CONCLUSION 

This robotic system, coupled with computer vision design, 
offers significant benefits to on-site users by enhancing work 
quality and crucially addressing the safety risk of workers 
falling from heights. The shiny color of the buckle 
necessitates thorough testing for detection, posing a 
challenge to the capabilities of computer vision. However, 
our utilization of the latest YOLOv8 architecture, boasting a 
precision of 0.995, ensures effective buckle detection.  

Our model demonstrates proficiency in identifying 
buckles with specular highlights, overlapping configurations, 
and low light conditions, thereby proving valuable for the 
recognition and positioning tasks of metallic industrial parts. 
Nonetheless, inaccuracies in keypoint prediction present 
challenges in accurately estimating the pose of metal parts, 
necessitating further research. 

By adopting a training approach that combines real and 
synthetic data, we not only mitigate overfitting issues during 
neural network training but also augment the dataset, 
effectively easing the burden of data labeling. This approach 
represents a promising direction for the development of 
future intelligent industries.  

Ongoing research and advancements in computer vision, 
sensor technologies, and machine learning algorithms 
continuously improve vision-based metal detection systems. 
The dynamic nature of the field ensures that new techniques 
are regularly introduced to address emerging challenges, 
driving innovation and enhancing system capabilities. 
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