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Abstract—Audio denoising techniques are essential tools for
enhancing audio quality. Spiking neural networks (SNNs) offer
promising opportunities for audio denoising, as they leverage
brain-inspired architectures and computational principles to
efficiently process and analyze audio signals, enabling real-time
denoising with improved accuracy and reduced computational
overhead. This paper introduces Spiking-FullSubNet, a real-time
audio denoising model based on SNN. Our proposed model incor-
porates a novel gated spiking neuron model (GSN) to effectively
capture multi-scale temporal information, which is crucial for
achieving high-fidelity audio denoising. Furthermore, we propose
the integration of GSNs within an optimized FullSubNet neural
architecture, enabling efficient processing of full-band and sub-
band frequencies while significantly reducing computational over-
head. Alongside the architectural advancements, we incorporate a
metric discriminator-based loss function that selectively enhances
the desired performance metrics without compromising others.
Empirical evaluations show the superior performance of Spiking-
FullSubNet, ranking it as the winner of Track 1 (Algorithmic)
of the Intel Neuromorphic Deep Noise Suppression Challenge.

Index Terms—speech denoising, spiking neural network, neu-
romorphic computing, audio signal processing

I. INTRODUCTION

Spiking neural networks (SNNs) are emerging as an energy-

efficient alternative to traditional artificial neural networks

(ANNs) [1]. However, SNNs are primarily explored for classi-

fication tasks, there has been limited progress in applying them

to regression tasks, hindering their broader application [2]–[4].

Audio denoising, a typical regression task, plays a crucial role

in various applications, particularly on power-constrained edge

devices such as headsets, hearing aids, and smartphones [5].

These devices require real-time processing capabilities while

operating under restricted power budget to ensure a seamless
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user experience. Traditional methods driven by ANNs for

audio denoising often struggle to meet these demands due to

their heavy computational complexity [6]–[8].
In light of these challenges, SNNs present a promising

solution for audio denoising [9]. By capitalizing on the event-

driven computation and high-level sparsity of spiking events,

the compute load could be significantly reduced [10], enabling

real-time processing without compromising the power con-

sumption limitation. Nevertheless, developing an SNN-based

system that can deliver denoising performance comparable

to conventional solutions is challenging. It remains an open

question to determine suitable spiking neuron models, network

architectures, and loss functions that can fully unleash the

power of SNNs in audio denoising.
This paper presents a novel neuromorphic audio denoising

system that is grounded on a comprehensive study of these

perspectives. Firstly, we argue that existing spiking neuron

models struggle to retain multi-scale temporal information,

which is crucial for high-quality audio denoising. To over-

come this challenge, we propose a novel gated spiking neu-

ron model (GSN) that can dynamically control information

storage, ensuring the preservation of critical historical in-

formation. Furthermore, we propose the integration of GSN

within an enhanced FullSubNet [11] framework, which can

handle different frequency bands with varying levels of detail,

thereby improving computational efficiency. Additionally, we

incorporate a metric discriminator-based loss function [12],

[13] into our framework, which selectively improves targeted

evaluation metrics without negatively impacting other perfor-

mance measures. Our main contributions are threefold:

• We propose Spiking-FullSubNet, a novel real-time neuro-

morphic audio denoising system, by integrating the GSN

model, FullSubNet architecture, and metric discriminator-

based loss function. Our approach performs superior in

capturing multi-scale temporal information, leading to

accurate and efficient denoising results.
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• We validate the effectiveness of our system on the Intel

N-DNS Challenge dataset, demonstrating significant im-

provements over other spike-based baselines in denoising

quality metrics. Additionally, our system achieves a 10×
reduction in energy consumption compared to conven-

tional ANN-based solutions while maintaining compa-

rable performance, making it a promising solution for

power-constrained edge devices.

• We will open-source our code and release model check-

points to facilitate future explorations and promote inno-

vative solutions in neuromorphic audio denoising.

II. METHOD

Figure 1 illustrates the proposed Spiking-FullSubNet sys-

tem, which integrates a full-band model and multiple sub-band

models to effectively process the audio signal. Within each

model, the GSN is encapsulated to effectively capture multi-

scale temporal information within the input audio signal. We

will dive into details in the following sections.

A. Problem Formulation

In audio signal processing, the signal x(t) captured by a

microphone is typically composed of a desired source signal

s(t) and a mixture of stationary or non-stationary noises

u(t). Audio denoising aims to remove unwanted noises while

keeping the source signal. To achieve this, this work first

represents the input audio signal in the frequency domain via

the Short-Time Fourier Transform (STFT) as follows:

X(n, f) = S(n, f) + U(n, f), (1)

where X(n, f), S(n, f), and U(n, f) correspond to the

complex-valued time-frequency (T-F) bins at discrete time

frame n and frequency bin f , with n = {1, . . . , N} and

f = {0, · · · , F − 1}. The variables N and F represent the

total number of frames and frequency bins, respectively.

B. Gated Spiking Neuron (GSN)

The spiking neuron serves as the fundamental computing

unit in an SNN. The frequently used Leaky Integrate-and-

Fire (LIF) neuron model, however, struggles to achieve high

performance in audio denoising [9]. This is mainly due to the

fixed decay factor λ ∈ R used for every neuron, which restricts

their ability to retain multi-scale temporal information that is

critical for audio denoising. A recently proposed Parametric

LIF (PLIF) [14] replaces the fixed λ with learnable ones,

whose values are regulated via a sigmoid function σ(λ) ∈ R
N .

However, it still falls short as the decay factor remains constant

across different time steps. To overcome this limitation, we

introduce a gating function to regulate the decay rate at each

time step. This allows each neuron to dynamically adjust its

membrane potential, strengthening its capability to process

temporal tasks. The neuronal dynamics of GSN can be for-

mally expressed as follows:

il[t] = Wmno
l−1[t] +Wnno

l[t− 1] + b (2)

λl[t] = σ(Wmno
l−1[t] +Wnno

l[t− 1] + b) (3)

ul[t] = λl[t]ul[t− 1] + (1− λl[t])il[t] (4)

When the membrane potential surpasses a predefined thresh-

old, an output spike is triggered, followed by a resetting pro-

cess. To save parameters, we reuse the same weight matrices

for calculating λl[t] as those used in Equation (2). As a result,

our proposed GSN model has the same number of parameters

as PLIF [14]. The Spiking-FullSubNet further encapsulates the

proposed GSN model into an improved FullSubNet architec-

ture that will be introduced in the following subsection.

C. Improved FullSubNet
FullSubNet [11] is a popular audio denoising model that

synergistically combines a full-band model and a sub-band

model. In FullSubNet, the full-band model capture global

spectral information as well as cross-band dependencies, while

the sub-band model independently processes each frequency

band, focusing on local spectral patterns, reverberation char-

acteristics, and signal stationarity. Experimental evidence sup-

ports the effective integration of these two complementary

models within a single framework. However, FullSubNet’s

Achilles’ heel lies in the computationally intensive sub-band

component, which processes each band at the same frequency

granularity. This approach contrasts with the human auditory

system which is more sensitive to low-frequency sounds [15],

[16]. To address this issue, we introduce a frequency partition-

ing technique, which applies different processing granularity

across the frequency bands, mirroring the human auditory

system. Specifically, frequency partitioning allows for tailored

processing, with more deep filtering [17] applied to the low-

frequency bands and fewer to high-frequency bands. This

refinement to the FullSubNet model not only reduces com-

putational demand but also maintains output audio quality, as

confirmed in our experiments.

D. Loss Function Optimized with Black-Box Metrics
We employ a blend of loss functions for optimization.

First, we use the Scale-Invariant Signal-to-Distortion Ratio

(SI-SDR) [18] loss function LSISDR to ensure the time domain

alignment consistency. Then, we incorporate loss function

LFreq on complex and magnitude spectrogram for frequency-

level optimization. Finally, we include a MetricGAN+ [13]

loss LGen to predict the Deep Noise Suppression Mean Opinion

Score (DNSMOS) [19], a perceptual metric miming human

auditory impressions. The final combined loss function is

L = α(100− LSISDR) + βLGen

+ ||Ŝ(t, f)|p − |S(t, f)|p|+ |Ŝ(t, f)− S(t, f)|
︸ ︷︷ ︸

LFreq

, (5)

where α and β are hyperparameters that balance the SI-SDR

loss, frequency loss, and generator loss. p is the ratio of

dynamic range compression.

III. EXPERIMENTAL SETTINGS

A. Datasets
We adopted the Intel N-DNS Challenge dataset [9] for

model evaluation. Using the official synthesizer script, we
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Fig. 1. Diagram of the proposed Spiking-FullSubNet architecture.

TABLE I
CONFIGURATION SETTINGS FOR SPIKING-FULLSUBNET MODELS OF DIFFERENT SIZES. THE TABLE DETAILS THE HIDDEN SIZE OF THE GSN NEURON

FOR FULL-BAND (HFULL ) AND SUBBAND (HSUB ) MODELS, THE FREQUENCY CUTOFFS FOR DISCRETE FREQUENCY PARTITIONS (FREQ. CUTOFFS), THE

ORDER OF DEEP FILTERING (NDF ), AND THE NUMBER OF CENTER FREQUENCIES (# CENTER FREQS.).

Model Size Hfull Hsub Freq. Cutoffs Ndf # Ctr. Freqs.

Small (s) 240 160 {[0, 32), [32, 128), [128, 256]} [3, 1, 1] [4, 32, 64]
Middle (m) 320 224 {[0, 32), [32, 128), [128, 256]} [5, 3, 1] [4, 32, 64]

Large (l) 320 256 {[0, 32), [32, 128), [128, 192), [192, 256]} [5, 3, 1, 1] [2, 4, 32, 64]

synthesized a 495-hour subset, a 5-hour subset, and a 5-hour

subset for training, validation, and testing, respectively. The

audio samples, with a sampling rate of 16,000 Hz, were syn-

thesized to maintain a consistent 30-second duration. For audio

shorter than 30 seconds, concatenation with other speech sig-

nals from the same speaker was performed, with a 0.2-second

silence interval inserted between clean speech utterances. The

noisy audio was composed of randomly selected speech and

noise data with Signal-to-Noise Ratios (SNRs) ranging from

-5dB to 20dB. Loudness normalization was applied to each

noisy audio sample to simulate agnostic input loudness levels

from -35 to -15 decibels relative to full scale (dBFS). To

evaluate the audio quality, we employed metrics specified by

the Intel N-DNS Challenge, including SI-SDR [18], and Deep

Noise Suppression Mean Opinion Score (DNSMOS) [19].

Computational resource usage was also measured, taking into

account network latency, power consumption, Power Delay

Product (PDP), and model size, as described in the Section

VI of the official Intel DNS Challenge paper [9].

B. Implementation Details
We employ the magnitude feature in the frequency domain

for both input and output. The STFT is configured with a

window length of 512 and a hop length of 128. We utilize

AdamW as the optimizer with a learning rate of 1 × 10−3

and set the gradient norm clipping to 10. In the loss function

L, the weights are set to {α = 0.001, γ2 = 0.05, p = 0.5}.
We developed three variants of the Spiking-FullSubNet model

with different model sizes. They vary in the following aspects:

the hidden unit sizes for both the full-band and sub-band

model, the granularity of frequency partitioning, the order of

deep filtering, and the number of central frequencies. Detailed

settings for each variant are presented in Table I. The Spiking-

FullSubNet is trained using the backpropagation through time

(BPTT), where the gradient of the nondifferentiable spike

firing function is replaced with a surrogate one.

IV. RESULTS

We compare the proposed Spiking-FullSubNet against es-

tablished baselines, including the Microsoft NsNet2 [20], Intel

DNS network [9], and the SDNN network [9], which are

summarized in Table II. In this table, the noisy row shows

the evaluting metrics of the unprocossed noisy audio. The

Microsoft NsNet2 serves as the benchmark for the Microsoft

DNS 2022 and represents an ANN-based approach, as does the

Intel DNS network, which is a proprietary network utilized in

Intel’s production environments. The latter employs a causal

architecture incorporating LSTM and 2D convolution layers.

The SDNN network, on the other hand, utilizes a sigma-

delta method and is the official baseline for the Intel N-

DNS Challenge. The last three rows of Table II present

the performance of the proposed Spiking-FullSubNet under

different parameter configurations. A key distinction among

these configurations lies in the subband processing granularity,

with a comprehensive exposition provided in Table I, which

outlines the differences in subband processing granularity

among the models, providing insight into the underlying fac-

tors contributing to the observed performance enhancements.
We evaluated the models using several audio quality metrics,

such as DNSMOS scores, SISNR, and the improvement in SI-

SNR (SI-SNRi). All networks under study employ STFT en-

coding and ISTFT decoding, ensuring lossless transformation.

This uniformity in encoding and decoding allows for direct

comparison of relative performance differences across models

in terms of SI-SNR and SI-SNRi, as shown in the last three

rows of Table II.
Our results in Table II demonstrate that the SNN-based

models, including the SDNN baseline and the proposed
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TABLE II
EVALUATION METRICS COMPARISON.

Entry
SI-SNR

(dB)

SI-SNRi DNSMOS Latency Power
proxy

(M-Ops/s)

PDP
proxy

(M-Ops)

Param
count
(×103)

Model
size
(KB)

data

(dB)

enc+dec

(dB)

OVR SIG BAK enc+dec

(ms)

total

(ms)

Noisy 7.37 - - 2.44 3.16 2.69 - - - - - -

Microsoft NsNet2 11.89 4.26 4.26 2.95 3.27 3.94 0.024 20.024 136.13 2.72 2,681 10,500

Intel DNS Network 12.71 5.09 5.09 3.09 3.35 4.08 0.036 32.036 - - 1,901 3,802

SDNN baseline 11.85 4.48 4.48 2.69 3.21 3.45 0.036 32.036 14.54 0.44 525 465

Spiking-FullSubNet (Small) 13.89 6.52 6.52 2.97 3.28 3.93 0.03 32.03 29.24 0.94 521 2,084

Spiking-FullSubNet (Middle) 14.71 7.34 7.34 3.05 3.35 3.97 0.03 32.03 53.60 1.72 953 3,816

Spiking-FullSubNet (Large) 14.80 7.43 7.43 3.03 3.33 3.96 0.03 32.03 74.10 2.37 1,289 5,156

Spiking-FullSubNet, are significantly more efficient than the

ANN-based solutions, such as the NsNet2 baseline and Intel

DNS Network. This efficiency, measured by an order of

magnitude, underscores the potential of SNN-based methods

for ubiquitous audio denoising tasks. Further examination

of the proposed Spiking-FullSubNet, especially the small-

sized model variant, reveals a compelling balance between

computational and network metrics comparable to that of the

SDNN baseline. Moreover, the Spiking-FullSubNet exhibits

superior performance in audio quality metrics, significantly

surpassing the baseline models. It is worth mentioning that

the proposed Spiking-FullSubNet ranked as the top entry for

Track 1 (Algorithmic) of the Intel Neuromorphic Deep Noise

Suppression Challenge.

V. CONCLUSION

This paper introduces the Spiking-FullSubNet, a ground-

breaking SNN-based system tailored for real-time audio de-

noising tasks. The Spiking-FullSubNet incorporates a novel

GSN neuron model capable of capturing multi-scale tempo-

ral information, as well as an improved FullSubNet neural

architecture that mimics human auditory perception. Our ex-

perimental results demonstrate significant improvements in

computational efficiency and denoising performance. By lever-

aging the algorithmic advancements of Spiking-FullSubNet,

our work presents a promising solution for a wide range of

devices equipped with auditory interfaces.
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