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Abstract—Given AI’s increasing role in healthcare, it is vital
to ensure that created models neither perpetuate nor introduce
new biases. One of the naive approaches to mitigating bias
is omitting demographic data features during model training.
However, in healthcare, this method might not yield the best-
performing models as these features may contain crucial care-
related information. This paper explores the trade-offs between
optimal performance and algorithm bias linked to using demo-
graphic data. We demonstrate the approach using a healthcare
model that predicts ICU readmission risk of patients.

Index Terms—Healthcare, Fairness, Machine Learning, Artifi-
cial Intelligence, ICU Readmission Risk

I. INTRODUCTION

AI systems such as machine learning (ML) models are

transforming various industries, and healthcare is no exception.

In every context these systems are used, including healthcare,

they raise the concern of bias against different demographic

subgroups. In healthcare, ML models have been utilized for

diagnosing various diseases, such as cancer [2], and most re-

cently COVID-19 [1]. They have also been used for prediction,

including patients’ Intensive Care Unit (ICU) readmission risk,

mortality, and ICU length of stay [4], [6]. As the use of ML

in healthcare increases so does the concern to ensure that the

developed models do not perpetuate existing biases or create

new ones [3], [5]. In this paper, we examine the bias connected

to using demographic data in ML for healthcare by evaluating

the impact on model performance and fairness of including or

withholding demographic data.

One naive approach to mitigate ML biases is to exclude fea-

tures that might aid in identifying an individual, such as race,

gender, and insurance type, from the training data, ensuring

the model doesn’t explicitly use such features for predictions

[7]. However, this approach may not consistently yield the

best performance and can be ineffective in preventing bias as

these features may provide valuable information, particularly

in healthcare. Lin et al. [4] demonstrated that incorporating

all demographic information enhanced predictive models per-

formance for ICU readmission risk. In contrast, including

such demographic features might introduce additional bias.

To understand this trade-off between performance and bias, we

developed a framework for deciding when to use demographic

data as input using Lin et al.’s model for demonstration [4].

Specifically, the paper explores the models presented by Lin et

al. [4] to investigate whether the increased performance after

using demographic data is consistent across all patients. We

systematically explored the trade-off for each demographic

variable and their combinations by comparing two identical

models that differ only in whether they used particualr demo-

graphic information.

II. METHOD

In the work done by Lin et al., the authors used supervised

machine learning models to predict ICU readmission risk using

patients’ clinical data. They tested several models, including

the Long Short Term Memory (LSTM), Convolutional Neural

Network (CNN), and a hybrid combination of the two. For

input data, they tested different time series windows of the

medical data, finding that the last 48 hours(L-48) before

transfer/discharge data resulted in the best-performing mod-

els. Additionally, they evaluated whether adding demographic

information boosted the performance of the model, finding

positive results. [4]

For our analysis, we took two LSTM models with the L-

48 data from the work done by Lin et al. [4] as base models

where the only difference between the two is the incorporation

of demographic data. The base model was the most explored

and showed the third highest performance improvement with

the inclusion of demographic data in the original work. We

refer to the model with demographic information as WD and

the one without it as WOD.

The original model by Lin et al. [4] utilizes True Positive

Rates (TPR) for reporting results, and we adopt the same

metric to examine performance and bias for two primary

reasons. First, it is used to maintain consistency with the

original work because it allows us to measure disparity using

the originally intended metric. Second, assuming that a true

positive prediction gets the benefit of extended care due to

the high risk of readmission, TPR allows us to gauge the

classification effectiveness of the models and assess whether

the inclusion of demographic data has increased or decreased

the disparity of such benefit.

To examine introduced bias resulting from the use of

demographic data, the TPR of model WOD is computed for

different demographic subgroups, and compared to the TPR

of model WD for the same groups. The TPR for each model

is derived by averaging the TPR values obtained through a

5-fold cross-validation. The difference of these TPRs between

model WOD and WD is then used to measure the disparity of
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Fig. 1: TPR differences of model WOD and WD: 1a for gender,

ethnicity, and Insurance separately; 1b, 1c, and 1d for intersec-

tional groups (Insurance, Ethnicity), (Insurance, Gender), and

(Gender, Ethnicity), respectively, where F: Female, M: Male,

G: Government, M-i: Medicaid, M-r: Medicare, P: Private

are different insurance groups and N: No Data, B: Black, H:

Hispanic, A: Asian, W: White are different ethnicity groups

benefit for each demographic group that happens as a result

of using demographic data.
To explore further, we extend our analysis to include in-

tersectional demographic groups. This entails repeating the

same analysis for patients who belong to different categories

of demographic groups, simultaneously. For example, we

evaluate how model WOD performs for female patients with

Medicaid insurance and compare it to how model WD performs

for the same group of patients.

III. RESULTS

When observing the results, bias could be noticed in two

ways. First, when the TPR difference is negative for some

demographic groups and positive for others, it implies varying

benefits from the use of demographic information. Second,

when there is a noticeable gap in the magnitude of the

TPR difference among different groups, it suggests that the

magnitude of benefit from the use of demographic information

varies across such groups.
Fig. 1a to Fig. 1d present the TPR difference for individual

subgroups and their intersection. Each figure is centered at 0

with positive WOD minus WD to the right and negative WOD−WD

to the left of the center. The magnitudes of the bars show

the extent to which demographic information contributed to

the improvement. Figure 1a shows the TPR difference for

all subgroups across gender, ethnicity, and insurance. Addi-

tionally, Figure 1b, 1c and 1d show the difference for all the

intersectional groups.
Figure 1a shows that the addition of demographics data

increased the benefit of all subgroups except for patients with

self-pay and Hispanic patients compared to the model WOD. It

can also be seen that there is a magnitude difference among

both the positive and negative bars. All of the figures illustrate

both kinds of biases discussed above. For example, figure 1c’s

first type of bias is noticeable when observing the performance

bar for female patients with government insurance, where the

bar is to the right of the center axis. It can be inferred that

the addition didn’t help this demographic group, resulting

in an average performance decrease of approximately 13

percent. For the second bias, the noticeable comparison is the

big difference between females and males with government

insurance, where there is a benefit disparity of roughly 40

percent, although more disparities can be observed. Such

inference can be made about all the other figures as well, but

it is important to note that as the number of patients decreases

in the group, the fluctuations in benefit could be higher and

that needs to be kept in mind when making decisions.

IV. DISCUSSION AND CONCLUSION

As shown throughout this paper, depending solely on a

single metric for reporting can obscure nuanced information,

especially in the area of algorithmic fairness. For an increased

overall performance of roughly 2 percent TPR, the figures

above show the kind of benefit disparity that could be intro-

duced. Such disparity could be attributed to inherent historical

biases, systemic biases, or algorithmic biases, prompting the

need for additional research to distinguish between these

factors. Depending on the application, the acceptable trade-

off and bias could differ, but these kinds of analyses allow us

to understand such trade-offs before making decisions.

This paper presented the result of an analysis that looked

to examine the trade-offs between optimal performance and

algorithm bias linked to using demographic data. It is impor-

tant to understand that the use of demographic information

does not always increase benefits for all protected groups

uniformly. This analysis is key to assessing the trade-off

between performance and bias and can be used to decide

whether or not to use demographic information.
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