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Abstract—Next Point-of-interest (POI) recommendation pro-
vides valuable suggestions for users to explore their surrounding
environment. Existing studies rely on building recommendation
models from large-scale users’ check-in data, which is task-
specific and needs extensive computational resources. Recently,
the pretrained large language models (LLMs) have achieved
significant advancements in various NLP tasks and have also
been investigated for recommendation scenarios. However, the
generalization abilities of LLMs still are unexplored to address
the next POI recommendations, where users’ geographical move-
ment patterns should be extracted. Although there are studies
that leverage LLMs for next-item recommendations, they fail to
consider the geographical influence and sequential transitions.
Hence, they cannot effectively solve the next POI recommenda-
tion task. To this end, we design novel prompting strategies and
conduct empirical studies to assess the capability of LLMs, e.g.,
ChatGPT, for predicting a user’s next check-in. Specifically, we
consider several essential factors in human movement behaviors,
including user geographical preference, spatial distance, and
sequential transitions, and formulate the recommendation task
as a ranking problem. Through extensive experiments on two
widely used real-world datasets, we derive several key findings.
Empirical evaluations demonstrate that LLMs have promising
zero-shot recommendation abilities and can provide accurate
and reasonable predictions. We also reveal that LLMs cannot
accurately comprehend geographical context information and are
sensitive to the order of presentation of candidate POIs, which
shows the limitations of LLMs and necessitates further research
on robust human mobility reasoning mechanisms.

Index Terms—LLMs, Next POI Recommendation, Zero-shot,
Spatial-Temporal Data

I. INTRODUCTION

Recent years have witnessed the rapid development of

location-based social networks (LBSNs) such as Foursquare

and Facebook Places, where users can share their geograph-

ical positions by checking in points of interest (POI) on

social networks. POIs usually denote the specific geographical

locations that some users might find useful or interesting,

such as coffee shops and libraries. Based on the check-in

records, we can learn the user’s mobility movement patterns

and further recommend appropriate POIs for users to visit.

The POI recommendation task [1] is of great value in real-

world scenarios, as it can help users to better explore their

(†Both authors contributed equally to this research;∗Corresponding author.)

surroundings, attract potential consumers for business holders,

and increase the revenue of service platforms.

Compared with conventional POI recommendation tasks,

the next POI recommendation task [2] focuses specifically on

predicting the user’s next likely visit, which is more challeng-

ing. As presented in Figure 1, given a user’s check-in trajectory

{l1, l2, l3, l4}, it aims to recommend the next location to visit.
The next POI recommendation problem has attracted exten-

sive research interest and various recommendation models

have been developed [3]–[8]. However, existing methods need

construct and train recommendation models from large-scale

users’ check-in data, which consumes extensive computational

resources. In addition, these recommendation methods are

task-specific and lack generalization capability. In this work,

we examine the next POI recommendation task from another

perspective. Instead of training a task-specific recommendation

model, we attempt to leverage the general-purpose pretrained

large language models for generating sequential POI sugges-

tions, which has not been explored before.
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Fig. 1. An example of the next POI recommendation task. Each POI is
associated with geographical coordinates and category information. Given
the recent trajectory, e.g., {l1, l2, l3, l4}, it aims to predict POIs to visit
subsequently.

LLMs not only have achieved remarkable results in various

natural language processing tasks, but also have shown im-

pressive performance in many domains. First, the geographi-

cal information can be extracted from the pretrained LLMs

and further used for spatial-temporal studies. For example,

Manvi et al. [9] prove that LLMs embed remarkable spatial
information, and Gurnee et al. [10] find that LLMs learn
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linear representations of space and time across multiple scales.

Roberts et al. [11] examine the degree to which GPT-4

acquires factual geographical knowledge and interpretative

reasoning. Second, LLMs have been used for analyzing user

mobility behaviors and spatial trajectory patterns [12]–[14].

However, these preliminary studies do not fully consider

the geographical correlations and focus on different targets,

e.g., anomaly trajectory detection and public event prediction,

which are dissimilar to our work. Last, several LLM-based

next-item methods [15]–[18] have been proposed and obtained

promising zero-shot sequential recommendation performance

on movie and E-commerce dataset, etc. Current solutions,

unfortunately, fall short of capturing crucial aspects for next-

Point of Interest (POI) recommendation tasks, specifically the

geographical correlations and sequential transitions. Conse-

quently, there is a pressing need to explore effective strategies

for leveraging LLMs to address personalized user mobility

recommendations.
This study investigates the application of pretrained LLMs

in modeling human check-in trajectory data. Utilizing LLMs

for this purpose presents a non-trivial challenge, as LLMs are

inherently designed and optimized for language processing,

making direct usage impractical for location prediction. To

overcome this limitation, we introduce a novel framework

named LLMmove, aiming to seamlessly integrate human

movement prediction with language modeling. One of the

key differences between next POI recommendation and the

next-item recommendation [15]–[18] is the geographical cor-

relations in user movements since users tend to visit close

locations rather than far away places. This assumption is

consistent with Tobler’s first law of geography, “Everything

is related to everything else, but near things are more related

than distant things”, which is the fundamental assumption used

in spatial analysis. Specifically, we present the check-in data

into long-term check-ins and recent check-ins, which reflects
the user’s long-term spatial preference and the current spatial

preference, respectively. For each POI in the candidate set,
we calculate its geographical distance1 from the user’s current

position (indicated by the last check-in). Here, we incorporate

four important factors for the next POI recommendation: long-

term preference, current preference, geospatial distance, and

potential sequential transitions. Then, by considering these

requirements, LLMs are instructed to recommend Top-K POIs

and provide explanations for the returned recommendations.
We conduct extensive experiments on two widely used real-

world datasets for next POI recommender systems, which

yield several significant insights. Our empirical evaluations

showcase the promising zero-shot recommendation capabil-

ities of LLMs, providing relatively accurate and reasonable

predictions. However, it becomes evident that LLMs struggle

with accurately grasping geographical context information and

exhibit sensitivity to the order in which candidate POIs are

presented. These limitations underscore the need for further

1We also explore many strategies to use ChatGpt to directly compute the
spatial distances based on the POIs’ coordinates, but cannot obtain accurate
results. Hence, we calculate the distances and utilize them as input.

research to develop robust human mobility reasoning mecha-

nisms in conjunction with LLMs.

The contributions of this work are summarized as follows:

• We investigate a novel research task, which explores the

zero-shot generalization of LLMs to address the next POI

recommendation. To the best of our knowledge, this is the

first work to utilize the LLMs for POI recommendations.

• We develop a novel prompting framework, namely LLM-

move, to incorporate various factors for sequential POI

recommendation, including user spatial preferences, geo-

graphical distances, and sequential transitions.

• We conduct extensive experiments on two real-world

datasets and derive several findings. The empirical re-

sults demonstrate the effectiveness of the proposed

framework. The datasets and codes are available at

https://github.com/LLMMove/LLMMove.

II. RELATED WORK

A. Next-POI Recommendation

As an important human mobility mining task, the next-POI

recommendation problem captures the users’ complex person-

alized check-in behaviors, where various factors play essen-

tial roles including individual interests, continuous movement

patterns, and spatial-temporal influence, etc. Recently, the next

POI recommendation has attracted extensive research interests

and a large variety of approaches have been developed [4]–[8],

[19]–[21]. However, existing approaches require constructing

and training recommendation models using extensive users’

check-in data, demanding significant computational resources.

Moreover, these task-specific recommendation models fall

short in providing zero-shot POI recommendations for users.

Different from them, this work aims to generate the next

POI suggestions without the need for task-specific training,

a direction not previously explored.

B. LLM-Based Recommender Systems

Very recently, the LLMs have been exploited for the rec-

ommendation tasks [22]. Although LLMs are not specifically

designed for capturing user-item interactions, their proficiency

in understanding textual information and robust generative ca-

pabilities, including providing explanations and justifications,

holds significant promise for improving recommendations. An

illustrative example is the generative GPT4Rec framework

proposed in [23], which treats the recommendation task as

a query generation and searching procedure.

Several LLM-based recommendation methods address se-

quential recommendation problems. Harte et al. [24] pro-
pose three variants: LLM Embeddings, Fine-Tuned LLM, and

LLM-enhanced Sequential Model. Wang et al. [15] intro-
duce Zero-Shot Next-Item Recommendation with a prompting

strategy guiding GPT-3 through user preferences, historical

items, and top-K recommendations. Liu et al. [16] evaluate
ChatGPT in five recommendation scenarios, employing zero-

shot and few-shot prompt strategies for next-item prediction

based on past sequential behaviors. [17] enhances sequential

recommendations with a recency-focused prompting method.
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Dai et al. [18] combine ChatGPT with information retrieval

for improved recommendation capabilities. However, these

prompt-based methods lack consideration for geographical

information, hindering their effectiveness in solving the next

POI recommendation task.

C. LLMs for User Mobility Patterns

The exploration of leveraging pre-trained models for model-

ing geographical spatial data has garnered increasing research

attention. Two main approaches emerge: training geospatial

pre-trained models and utilizing open-accessible Large Lan-

guage Models (LLMs) for geospatial tasks. Mai et al. [25]
and Balsebre et al. [26] focus on geospatial foundation models.
Based on the open-sourced LLaMA model, Deng et al. [27]
develop a foundation language model for understanding and

utilizing geoscience knowledge. For open-accessible LLMs,

studies like [11], [28], [29] explore tasks like population

description, economic livelihood measurement, and route plan-

ning. [9] and [10] highlight that LLMs capture spatial infor-

mation and acquire coherent knowledge about space and time.

Approaches like [12]–[14] employ pre-trained LLMs for

various human mobility prediction tasks, such as anomaly

detection using LLMs [13], predicting travel demand under

public events [14]. It’s worth mentioning that [12] introduces

the LLM-Mob framework, utilizing accessible LLMs for learn-

ing mobility data. While it accounts for both long-term and

short-term dependencies, its primary focus is on incorporating

temporal information into human mobility sequences. How-

ever, the framework is specifically designed for the time-

aware location prediction task, limiting recommendations to

historically visited places. In essence, it does not provide

recommendations for new locations and does not consider the

geographical information of places.

III. PROBLEM STATEMENT

Let L = {l1, l2, . . . , l|L|} represent a set of Points of Interest
(POIs), with each POI denoted as < Id, Cat, Lat, Lon >.
Here, Id denotes the unique ID for the respective POI, Cat
indicates its category (e.g., Gym or Train station) providing

semantic information, and Lat and Lon signify geographical

coordinates, specifying latitude and longitude, respectively.

Each check-in is represented as a tuple cul,t =< u, l, t >,
indicating that user u visited POI l at timestamp t. A trajectory

traj = {cul1,t1 , cul2,t2 , . . . , culk,tk} represents a sequence of

POIs visited by a user within a short time interval (e.g., 24

hours in this study). Focusing primarily on POI sequences in

this work, the trajectory is denoted as traj = {l1, l2, . . . , lk}
to avoid ambiguity.

Building upon prior research [5], [8], the objective of next

POI recommendation is to furnish a list of potential POIs

that a user is likely to visit subsequently. Formally, given

the historical check-ins of a specific user and their current

trajectory traj = {l1, l2, . . . , lk}, the aim is to predict the

probable next POI lk+1 that will be visited in the near future.

Prompt
<long-term check-ins> [Format: (POIID, Category)]: {long-term check-ins}
<recent check-ins> [Format: (POIID, Category)]: {recent check-ins}
<candidate set> [Format: (POIID, Distance, Category)]: {sorted candidate set}
Your task is to recommend a user's next point-of-interest (POI) from <candidate set> based on his/her trajectory information.
The trajectory information is made of a sequence of the user's <long-term check-ins> and a sequence of the user's <recent 
check-ins> in chronological order.
Now I explain the elements in the format. "POIID" refers to the unique id of the POI, "Distance" indicates the distance 
(kilometers) between the user and the POI, and "Category" shows the semantic information of the POI.

Requirements:
1. Consider the long-term check-ins to extract users' long-term preferences since people tend to revisit their frequent visits.
2. Consider the recent check-ins to extract users' current perferences.
3. Consider the "Distance" since people tend to visit nearby pois.
4. Consider which "Category" the user would go next for long-term check-ins indicates sequential transitions the user prefer.

(1) Construction of Input Data

Trajectory

recent
check-ins

long-term
check-ins

candidate set

sorted
candidate set

LLM

(3) Recommendation
 & Explanation

(2) Statement of Requirements
long-term preference current preference

geospatial distance sequential transition

Fig. 2. The workflow of the designed LLMmove framework and the
corresponding prompts.

IV. METHODOLOGY

Our study empowers Large Language Models (LLMs)

for zero-shot next Point of Interest (POI) recommendations

using a multi-step prompting strategy, namely LLMmove,

as depicted in Figure 3. This LLMmove framework guides

LLMs through three phases. Initially, it preprocesses data and

incorporates background knowledge as input. Subsequently, it

instructs the LLM to weigh four key factors: long-term and

current user preferences, geographical distance, and sequential

transitions. Finally, the LLM generates top-k POI recommen-

dations with accompanying explanations.

A. Construction of Input Data

For personalized next POI recommendations, we leverage

two types of user trajectory data: long-term check-ins cap-

turing broader preferences and recent check-ins reflecting im-

mediate interests. Additionally, we factor in the geographical

distance of candidate POIs from the user’s current location,

recognizing its impact on travel behavior. These elements

feed into the LLM, enabling it to suggest relevant and timely

locations for each user.

B. Statement of Requirements

When analyzing user mobility behaviors, four key factors

demand consideration. The first is long-term check-ins, offer-

ing insights into user preferences. The second, recent check-

ins, mirror current contextual preferences. Thirdly, distance

plays a role, as users tend to favor nearby Points of Inter-

est (POI). Additionally, we delve into sequential transition

patterns, exploring the flow between continuous categories in

users’ long-term check-ins.

C. Recommendation and Explanation

In this stage, we guide the LLM to generate the next POI

recommendation along with reasons for the suggestion. Lever-

aging background knowledge, including both long-term and

recent check-ins, and considering the candidate side, the LLM

is instructed to incorporate the four requirements into the user
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movement suggestion. Given the conditions and requirements,

the LLM produces recommendations and explanations.

V. EXPERIMENTS

A. Experimental Setup
1) Datasets: To assess the efficacy of leveraging LLMs

for next-POI recommendation, we employ two widely-used

datasets: NYC [30] and TKY [30], following the experimental

setting of [8]2. Both the NYC and TKY datasets were col-

lected from the Foursquare from April 2012 to February 2013,

constituting location-based social network check-in records.

NYC denotes the check-in data in New York City, while TKY

covers the check-in data from Tokyo. Each check-in record

includes the user, POI, POI category, geographical coordinates,

and timestamp. The check-in records are organized in chrono-

logical order, with the first 80% serving as the training set,

the subsequent 10% as the validation set, and the last 10% as

the test set. The statistics of check-in datasets are reported in

Table I. Here, #Test-Traj denotes the number of trajectories in

test cases. For a given test trajectory T raj = {l1, l2, ..., lk},
we utilize the first k − 1 check-ins are the recent context, and
the last visited POI lk is considered as the ground truth POI.
In each test case, the candidate set comprises the ground truth

POI and 100 randomly sampled POIs, following a common

practice in recommendation evaluation [31].
It’s noteworthy that historical records in the training set are

exclusively used to reflect users’ long-term preferences. In-

stead of constructing sequential POI recommendation models,

as in existing studies, we directly employ LLMs to perform

zero-shot POI recommendations for users’ next moves.

TABLE I
STATISTICS OF TWO REAL-WORLD CHECK-IN DATASETS

Dataset #Users #POIs #Category #Checkins #Test-Traj
NYC 1,048 4,981 318 103,941 1,364
TKY 2,282 7,833 290 405,000 4,610

2) Evaluated Methods: We assess the performance of the

following approaches:

• Popu: This method selects the most popular POIs, i.e.,
the frequently visited locations by users.

• Dist: This approach directly chooses the nearest locations,
i.e., the locations with the shortest distance.

• CZSR [16]: It develops a set of prompts for different

recommendation scenarios, and we choose the zero-

shot sequential recommendation prompt as the compared

baseline in this work.

• LLMRank [17]: LLMRank regards the recommendation
task as a ranking task, where historical interactions serve

as conditions, and LLMs are instructed to rank a set of

candidates. We choose the recency-focused prompting to

incorporate recent check-in information.

• ListRank [18]: It boosts the LLM’s recommendation

capabilities by ranking policies. We use the list-wise

ranking policy as the compared recommendation baseline.

2https://github.com/ant-research/Spatio-Temporal-Hypergraph-Model

• LLMMob [12]: It leverages LLMs to analyze human mo-
bility data by considering both long-term and short-term

dependencies. By incorporating the temporal information,

it aims at solving the time-aware mobility prediction.

• LLMMob(-Time) [12]: To make a fair comparison with
other baselines, it removes the temporal information in

the LLMMob framework.

• LLMMob(+Geo): It extends the LLMMob approach [12]
by additionally considering geographical influence, which

is the same with the setting of LLMmove.

• LLMmove: LLMmove extracts user preferences, ge-

ographical influence, and sequential transitions, which

constitute our proposed prompting strategy.

For all the evaluated LLM-based methods, we use the gpt-
3.5-turbo as the default LLM for a fair comparison.

3) Evaluation Metrics: Consistent with prior studies on

POI recommendation [5], [8], we employ two widely used per-

formance evaluation metrics: Top-K accuracy rates (Acc@K)

and Mean Reciprocal Rank (MRR). Acc@k assesses whether

the ground truth POI is present in the Top-K recommended

list, while MRR considers the ranking position of the ground

truth in the sorted recommended list. Given the n test cases,

Acc@k and MRR are defined as:

Acc@k =
1

n

n∑

1

hits(rankgt ≤ k), MRR =
1

n

n∑

1

1

rankgt
. (1)

The function hits() is an indicator: it returns 1 if the

condition is true, and 0 otherwise. rankgt represents the rank
of the ground truth next POI in the recommended list.

B. Next-POI Recommendation Results

The empirical results for next-POI recommendation are

presented in Table II. The observations are as follows: (1)

Popu demonstrates satisfactory performance, suggesting users’

inclination towards popular places. (2) Dist shows promising

results, surpassing existing sequential zero-shot recommenda-

tion methods significantly. This underscores the crucial role

of geographical distance in the next POI recommendations.

(3) Applying existing sequential zero-shot methods (CSR,

LLMRank, ListRank) for predicting users’ next movements is

unfeasible, as they lack geospatial consideration. (4) LLMMob

achieves relatively higher scores on both datasets, indicating

its effectiveness in modeling user mobility data. By comparing

the three variants of LLMMob, we can learn that both temporal

and spatial information are beneficial for predicting future

movements. (5) The proposed LLMMove attains the best

performance, highlighting the advantages of the prompting

strategy. Different from other baselines, it can make full use

of geographical distance and sequential transition patterns.

In particular, LLMmove outperforms the LLMMob(+Geo)by

effectively leveraging spatial distance and personalized se-

quential patterns in user check-in behaviors. Overall, the

proposed LLMmove excels in the next POI recommendation,

showcasing its efficacy in harnessing LLM capabilities and

learning user movement trajectories.
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TABLE II
THE EXPERIMENTAL RESULTS OF NEXT-POI RECOMMENDATION ON REAL-WORLD DATASETS.

NYC TKY
Methods Acc@1 Acc@5 Acc@10 MRR Acc@1 Acc@5 Acc@10 MRR
Popu 0.0500 0.2200 0.2750 0.1168 0.2300 0.4000 0.5050 0.3148
Dist 0.3702 0.5700 0.6195 0.4452 0.2700 0.4850 0.5450 0.3682
CZSR 0.1600 0.2400 0.2800 0.1903 0.1300 0.1700 0.1800 0.1461
LLMRank 0.0400 0.1150 0.1750 0.0738 0.0100 0.0850 0.1600 0.0469
ListRank 0.1100 0.1700 0.2050 0.1347 0.1250 0.1500 0.1750 0.1357
LLMMob 0.3600 0.5450 0.6050 0.4384 0.3350 0.4800 0.5150 0.3873
LLMMOB(-time) 0.2750 0.5550 0.6500 0.3911 0.2750 0.4550 0.4900 0.3505
LLMMob(+Geo) 0.3850 0.5850 0.6550 0.4703 0.3200 0.5500 0.6100 0.4091
LLMmove 0.5200 0.6100 0.6650 0.5585 0.4200 0.5800 0.6250 0.4847

TABLE III
THE ABLATION STUDIES OF LLMMOVE ON THE NYC DATASET.

Variants Acc@1 Acc@5 Acc@10 MRR
LLMmove 0.5200 0.6100 0.6650 0.5585
-LP 0.4900 0.5800 0.6200 0.5266
-RP 0.5100 0.6100 0.6500 0.5521
-Geo 0.4800 0.5750 0.6250 0.5201
-Seq 0.5250 0.5850 0.6400 0.5554

TABLE IV
THE IMPACT OF THE ORDER OF CANDIDATE POI ON THE NYC DATASET.

Order Acc@1 Acc@5 Acc@10 MRR
(a) Dist-asc 0.5200 0.6100 0.6650 0.5585
(b) Dist-des 0.2000 0.3000 0.3250 0.2398
(c) Rand 0.3250 0.4500 0.5150 0.3854
(d) Freq-asc 0.3600 0.4450 0.4950 0.4060
(e) Freq-des 0.4400 0.5400 0.6400 0.4900

C. Ablation Studies

We conduct ablation studies to examine the impacts of

different factors: long-term preference (LP), recent preference

(RP), geographical influence (Geo), and sequential transition

(Seq). The empirical results are presented in Table III, yielding

the following observations: (1) The considerable performance

gap between LLMmove-LP and LLMmove indicates the im-

portance of long-term preference. (2) LLMmove-RP shows

results close to LLMmove, indicating that current preference

might not be significantly influential in LLMs. Despite the

acknowledged relevance of a user’s current interest in POI

recommendations, the LLMs may struggle to fully utilize this

factor in zero-shot scenarios, lacking collaborative information

from other users. (3) LLMmove-Geo exhibits the lowest

performance, underscoring the essential role of geographical

distance in next POI recommendations. (4) LLMmove-Seq

attains results similar to LLMmove. Although it shows slightly

better results on Acc@1, its performance is inferior on Acc@5,

Acc@10, and MRR. The relatively lower scores of Acc@5

and Acc@10 imply that, without explicitly considering this

requirement, LLM may overlook potential POIs associated

with sequential transitions.

Moreover, we made an interesting observation: the order of

the candidate set significantly affects the recommendation per-

formance. To explore this impact, we compared several ways

to present the candidate POIs: (a) sorted by their distances

in ascending order (Dist-asc); (b) sorted by their distances

in descending order (Dist-des); (c) random sort (Rand); (d)

sorted by their category frequencies in ascending order (Freq-

asc); (e) sorted by their category frequencies in descending

order (Freq-des). The results are reported in Table IV. Notably,

presenting POIs with higher probabilities (e.g., shorter distance

or higher popularity) at the beginning of the candidate set leads

to remarkable improvement. For example, the performance

of Dist-asc is significantly better than Rand and Dist-des.

This improvement could be attributed to the LLM’s limited

capability to handle a large number of candidates. As an

empirical choice, we adopt the Dist-asc ordering to present

POI candidates in our work.

D. Case Studies

To develop an intuitive understanding of LLMmove’s rea-

soning ability and interpretability, we select and analyze some

example results from the NYC dataset, as shown in Table V.

Case 1 and case 2 demonstrate that LLMmove can deliver

accurate recommendations accompanied by plausible reasons.

These reasons align with the given requirements, showcasing

the model’s ability to reflect the specified factors for recom-

mendations. However, LLMMove fails to give reasonable rec-

ommendations sometimes. From Case 3, we can observe that

LLMMove points out the user’s frequently visited POI ’1823’

(Bar) twice, which may be attributed to limited categories in

the data. Additionally, when faced with insufficient sequential

transitions, LLM may struggle to make accurate predictions.

VI. CONCLUSION

In this study, we concentrate on harnessing the capabilities

of Large Language Models (LLMs) for the zero-shot next

POI recommendation task. Our approach considers both the

users’ long-term preferences and current preferences, as well

as geographic spatial distance and sequential transitions in user

mobility behaviors. To integrate these factors, we introduce a

novel prompt strategy aimed at generating top-K subsequent

POI recommendations along with the rationale for sugges-

tions. Extensive experiments conducted on two real-world

datasets demonstrate that our proposed method significantly

outperforms existing LLM-based baselines, showcasing its

effectiveness in the next POI recommendation. However, our

findings highlight potential challenges in spatial reasoning and

understanding geographical information, emphasizing the need
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TABLE V
CASES OF REASONS. THE RED TEXT HIGHLIGHTS THE REQUIREMENTS,

AND THE GROUND TRUTH POI IS MARKED IN BLUE.

Case 1 (Correct)
“recommendation”: [“4975”, “1449”, “3864”, “2713”, “2525”, “3513”,
“356”, “2836”, “3245”, “4321”].
“reason”: “Based on the user’s long-term check-ins, the user frequently
visits POI ‘1449’ (Gym / Fitness Center) and ‘2836’ (Neighborhood).
Therefore, it is likely that the user will visit these places again. Addi-
tionally, considering the recent check-ins, the user has visited POI ‘1449’
(Gym / Fitness Center) and ‘3864’ (Neighborhood) recently, indicating a
current preference for these places. Furthermore, the user tends to visit
nearby pois, so POI ‘4975’ (Home (private)) and ‘2713’ (Subway) are
also recommended. Finally, considering the sequential transitions in the
long-term check-ins, the user may visit POI ‘3245’ (Elementary School)
after visiting ‘2836’ (Neighborhood).”
“groundtruth”: 4975

Case 2 (Correct)
“recommendation”: [“1395”, “1494”, “646”, “327”, “4853”, “2442”,
“2932”, “2222”, “212”, “1043”].
“reason”: “Based on the user’s long-term check-ins, the user frequently
visits ’Plaza’ (POIID: 1494) and ’Performing Arts Venue’ (POIID: 1709).
Therefore, the user is likely to prefer places in the ‘Plaza’ category.
Additionally, considering the recent check-ins, the user’s most recent
check-in was at a ’Park’ (POIID: 2379). Taking into account the distance,
the closest POI in the candidate set is ‘Law School’ (POIID: 1395).
Therefore, the recommended POIs are the ten most probable places in the
candidate set that match the user’s preferences and are closest in distance.”
“groundtruth”: 1494

Case 3 (Incorrect)
“recommendation”: [“4882”, “3252”, “1986”, “4604”, “1297”, “4676”,
“3081”, “1122”, “1232”, “1304”].
“reason”: “Based on the user’s long-term check-ins, the user frequently
visits POIIDs ‘1823’ (Bar), ‘2279’ (Deli / Bodega), ‘3481’ (Home (pri-
vate)) and ‘1823’ (Bar). Therefore, the user is likely to prefer places in
the ‘Bar’, ‘Deli / Bodega’, and ‘Home (private)’ categories. Considering
the recent check-ins, the user has visited POIIDs ‘242’ (Bookstore) and
‘1048’ (Toy / Game Store). Based on the distance, the user is likely to
prefer nearby places. Therefore, the recommended POIIDs are the ten most
probable places in the candidate set that match the user’s preferences and
are nearby.”
“groundtruth”: 356

for future research to enhance the performance of generative

POI recommendations.
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