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Abstract—The recent surge in wildfire incidents, exacerbated
by climate change, demands effective prediction and monitoring
solutions. This study introduces a novel deep learning model,
the Attention Swin U-net with Focal Modulation (ASUFM),
designed to predict wildfire spread in North America using
large-scale remote sensing data. The ASUFM model integrates
spatial attention and focal modulation into the Swin U-net
architecture, significantly enhancing predictive performance on
the Next Day Wildfire Spread (NDWS) benchmark. Additionally,
we have developed an expanded dataset that encompasses wildfire
data across North America from 2012 to 2023, providing a
more extensive basis for model training and validation. Our
approach demonstrates state-of-the-art performance in wildfire
spread prediction, offering a promising tool for risk mitigation
and resource allocation in wildfire management. Related code is
in our public repository https://github.com/bronteee/fire-asufm

I. INTRODUCTION

Climate change has been correlated with a significant in-

crease in the occurrence of wildfires as well as global forest

loss, resulting in a devastating 42-44 percent loss in North

America alone between 2001 and 2019 [1] and in 2022
alone over 6.6 million hectares of tree cover was lost [2].

Studies have found factors such as increased fuel acridity

and flammability [3] and elevated levels of Persistent Positive

Anomalies (PPAs) [4] to be contributing to fire ignitions

with implications of a further upward trend as temperatures

continue to rise globally. The detrimental impact is not limited

to economic cost but also physical and mental health-related,

disproportionately affecting elderly and low-income popula-

tions [5].

As a result of these often catastrophic events becoming

more frequent, wildfire prediction and modeling have become

crucial in risk mitigation and targeted resource allocation,

providing key insights on fire behavior to allow for early

planning efforts [6]. Simulation of wildfire spread from remote

sensing data in particular offers an advantage in real-world

applications due to its accessibility and extensibility, with

potential utility in the timely mapping of wildfire activity to

aid in emergency response and management [7].

Responding to the call for action by [8] to leverage machine

learning in combating climate change challenges, a plethora

of tools, datasets, and techniques have emerged, enhancing

innovation in environmental science. For fire detection and

prediction, deep learning is a promising approach due to

the abundance of high-performing network architectures and

efficiency in solving complex problems with large feature

spaces such as the remote sensing data from satellite imagery.

While deep learning models have generally achieved great

performance on fire detection tasks with large-scale data,

results from spread prediction efforts, however, have been

highly inconsistent across dimensions including temporality,

region, and size of the data used, performance metrics, and

formulation of the problem [9]–[12]. This reflects the difficulty

of the task as well as the need for a broader search for

a generalized method capable of informing decisions across

areas on a continental scale - we use vision transformers in

a U-shaped formation combined with a more comprehensive

data set to tackle this problem.

In this study, we tailor various state-of-the-art segmen-

tation methodologies for large-scale wildfire spread model-

ing, utilizing remote sensing data. Our approach involves a

comprehensive examination of input features, loss functions,

deep network architectures, and mechanisms for attention and

representation modulation. To evaluate the generalizability of

our model, we have extended the scope of the Next Day

Wildfire Spread (NDWS) dataset. Originally, NDWS encom-

passed data from 2012 to 2020 within the United States [7].

We have expanded this dataset by including fire incidents

from 2012 to 2023 across North America. This expansion has

nearly doubled the dataset’s size. Building on our analyses,

we introduce a wildfire prediction model based on a symmet-

rical encoder-decoder architecture, employing Swin-Unet with

spatial attention and focal modulation [13]–[15]. This model

is designed to predict fire locations for t+1 day.

In this research, we make the following contributions:

1) To our knowledge, this is the first study that enhances

performance in large-scale, next-day wildfire prediction

using remote sensing data. Our evaluation encompasses

both the original benchmark dataset and our extended

dataset.

2) We introduce and implement a transformer-based, UNet-

like model, incorporating spatial attention and focal

modulation. This model demonstrably surpasses the ex-

isting top-performing models on the NDWS dataset.

3) We present an expanded version of the NDWS dataset,

which now includes data from 2012 to 2023 across North

America, providing a more comprehensive resource for

wildfire prediction.
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II. RELATED WORK

A. Modeling wildfire using remote-sensing data

Remote-sensing data is ideal for fire monitoring and early

detection, as a result, there have been multiple efforts in

developing computational models from satellite and geospatial

data for both real-time burn identification and prediction [11],

[16]–[18]. In general, these data-driven proposals select a

relatively small group of fire samples from a specific region

for training and testing, which have produced higher accuracy

performance. [19] compares homogeneous vs. heterogeneous

landscapes whose performance on heterogeneous was much

worse, speaking to the complexity of wildfire spread predic-

tion. The NDWS data set [7] is a large multivariate aggregation

of 18545 fire events in the United States spanning over 10
years along with 11 other relevant features including elevation,

wind direction and speed, minimum and maximum tem-

peratures, humidity, precipitation, drought index, vegetation,

population density, and Energy Release Component (ERC), at

a spatial resolution of 1km per pixel. By combining 2D fire

data with variables like topographical information and human

activity representation which have been attributed to wildfires

[20], it provides rich features that can be explored with deep

learning approaches. Given the similarity in data complexity

and imbalance, we take inspiration from medical segmentation

techniques in devising a solution - the next section discusses

the specifics.

B. Previous related work on the NDWS data set

In [10], the study uses ROC-AUC instead which is not an

ideal evaluation metric given the overwhelming majority of

sample pixels being negative, furthermore, shortening the time

interval between previous fire down to 30 minutes from one

day significantly reduces the future utility of the approach.

[11] introduces a CNN-based method similar to that of the

original data release, however, only a small subset of the data

was used for training as well as testing. In the work of [21],

variations of U-net with attention were analyzed and the study

prioritized training efficiency.

C. Deep Learning approaches for wildfire spread prediction

[22] discussed the development of physical models for

wildfire spread. Since growing advances in deep learning

applications, a variety of neural network-based methods have

been explored to simulate fire propagation including Irregu-

lar Graph Network (IGN) [12], CNN-based approaches [7]

[23], and convolutional LSTM [24]. Semantic segmentation

in image analysis involves assigning class probabilities to

each pixel. For wildfire spread modeling from satellite im-

agery, this concept is adapted to predict fire presence at

future coordinates (x, y), based on current ignition patterns,

environmental data, and adjacent locations. Unlike standard

RGB images, satellite data requires unique processing due

to its distinct band relationships. The U-net architecture, as

discussed in [25], offers an efficient U-shaped encoder-decoder

structure ideal for segmentation, particularly in delineating fire

perimeters. U-net’s effectiveness in fire prediction has been

well-documented [9], making it a solid baseline for initial

experiments. The Swin-Unet model [26], an advancement

over U-net, incorporates Swin Transformer blocks [27] for

improved performance. Additionally, the integration of spatial

attention, as explored in [14], further refines localization and

context recognition, enhancing overall model accuracy.

III. METHODS

Inspired by previous advances mentioned above, we present

Attention Swin U-net with Focal Modulation (ASUFM) where

each of the Transformer blocks consists of a normalization

layer (LayerNorm), a focal modulation layer followed by a

second normalization, and a shifted window multi-head self-

attention, while the spatial attention travels along the skip

connections between the encoder and decoder blocks to carry

an emphasis on higher importance tokens. In combining these

mechanisms of weighting, we ensure focus both across input

bands and within an image layer such as the fire perimeter. Fig.

2 shows the overall architecture of this approach. In addition,

including updated information on wildfire events is crucial to

providing and evaluating an expansive solution, to this end,

we perform additional GEE data extraction to obtain broader

spatial and temporal coverage to deal with the complexity of

wildfire spread modeling.

A. Spatial Attention

[17] demonstrates the effectiveness of applying spatially-

aware attention around the fire perimeter from previous time

steps. To this end, we bring forward spatial attention produced

in the encoding pathways [14] to localize on the relevant

tokens surrounding the fire, leveraging the skip connections

in the U-shaped architecture. This provides further guidance

on the model towards a correlation between previous day and

next day combustion.

B. Focal Modulation

We apply focal modulation [15] to handle the complexity

and heterogeneity of our input features and distinct relation-

ship between bands that requires both spatial and band speci-

ficity, allowing for efficient context building around previous

day fire coordinates across bands as well as extraction of

information from the t day fire layer. From the results, we see

that this helps achieve a balanced precision/recall compared to

using spatial attention alone. After the tokenization operation

q, focal modulation can be described as:

yi = q(xi)� h(

L+1∑
l=1

gli · zli) (1)

where each token xi goes through a modulation process that

produces gating value gli and visual feature zli through the

linear layer h.
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Fig. 1: Visualization of sample input bands and the target fire map.

Fig. 2: Overall architecture of ASUFM.

Fig. 3: Focal modulation operations

C. Swin Transformer Block with Focal Modulation

The Swin transformer backbone [28] exchanges the multi-

head self-attention (MSA) with a shifted window module

to achieve increased granularity in vision tasks, introducing

hierarchical and local context building. Evident in Fig 5,

Table I and Table. IV, the vanilla Swin configurations tend to

over-index on the previous day’s fire masks thus sacrificing

precision. To address this imbalance, we apply early focal

modulation [15] layers as an intermediary between the original

input zl−1 and subsequent attention layers. This results in the

following formulation:

ẑl−1
m = (LN(FM(zl−1)) (2)

ẑl = W -MSA(LN(ẑl−1
m )) + zl−1, (3)

zl = MLP (LN(ẑl)) + ẑl, (4)

zlm = (LN(FM(zl)), (5)

ẑl+1 = SW -MSA(LN(zlm)) + zl, (6)

zl+1 = MLP (LN(ẑl+1)) + ẑl+1 (7)

where ẑl−1
m denotes the output after focal modulation at block

l − 1, which is passed into the W -MSA and SW -MSA
modules after normalization with LayerNorm( LN ). Fig. 4

presents a diagram visualizing a couple of aforementioned

blocks.

IV. EXPERIMENTS

A. Experimental Setup

1) Data Set: The NDWS data set is comprised of 18454

samples containing data sources compiled using Google Earth

Engine (GEE) tools, each sample contains 12 layers of 64×64
remote sensing images as input including previous day fire

mask, and one layer of the target next day fire mask. We

perform data pre-processing using clipping and normalization

using values provided from the original data release [7] to

reduce the impact of extreme values. In addition, we also

experiment with downsizing and random cropping of the
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Fig. 4: Two connecting Swin Transformer with focal modulation
blocks

features into 32 × 32 pixels. To expand on the original data,

by extracting fires from 2012 to 2023 in coordinates covering

North America we reach a total sample size of 51388, a

detailed comparison is in Table III and Table II describes each

input variable.
2) Implementation and Training Details: Due to the im-

balance of the positive (i.e., fire) and negative (i.e., no fire)
classes in this data set where most pixels do not contain
fire, we discovered that the loss function commonly used in
segmentation approaches did not produce desirable results.
Taking into account the distinction between this problem
and typical segmentation, we explore combinations of loss
functions to handle the class imbalance and concluded that
weighted binary cross entropy (Eq. 8) with a positive weight
of 3.0 produced the best results, where N is the total number
of fire samples, yi is the true label of the i-th sample, ŷij is
the predicted probability of the j-th pixel being in a positive
class. w1 and w0 are the weights associated with the positive
and negative classes, respectively.

WBCE = − 1

N

N∑

i=1

P∑

j=1

[w1 ·yij ·log(ŷij)+w0 ·(1−yij)·log(1−ŷij)]
(8)

We train each of the models from scratch with an ADAM

optimizer with a weight decay of 0.05 on a single NVIDIA

A100-80G or a single RTX A6000 GPU. For managing

the learning rate, we use the cosine annealing learning rate

scheduler with the warm-up, and the batch size is 16. All input

features are clipped and normalized, and the number of input

features is also explored and selected based on the ablation

study presented in [7], which we show the results in the later

section.

B. Experiment Results

We present analysis on the Attention Swin-Unet with focal

modulation compared to other models in Table I, demon-

strating significant improvement in various metrics compared

to previous metrics [7] [21]. Keeping in mind the heavy

imbalance of positive (i.e., fire) and negative (i.e., no fire)

classes, we evaluate the performance of each method with

a Dice score (Eq. 9) and PR-AUC (Eq. 10). We are able

TABLE I: Performance comparison of the proposed ASUFM with
state-of-the-art techniques on the NDWS dataset

Methods PR-AUC Precision Recall Dice Score
U-net [25] 0.3081 0.3767 0.4026 0.3824
Attention U-net [29] 0.3217 0.3897 0.4184 0.3973
SU [30] 0.3132 0.3653 0.4230 0.3862
ASU [14] 0.3522 0.3807 0.4660 0.4132
FocalU-net [15] 0.2830 0.3645 0.3107 0.3303
RevCol [31] 0.1277 0.1772 0.4584 0.2499
ASUFM 0.3728 0.4301 0.4050 0.4109

TABLE II: Input variables in the augmented NDWS dataset

Variable Min Max Mean Description
elevation -9.00 3900.00 854.48 Elevation in meters
th -505875.44 37670.47 75.78 Wind direction in de-

grees clockwise
vs -98.15 87.71 3.88 Wind speed in m/s
tmmn 0.0 433.54 281.81 Min temperature in

Kelvin
tmmx 0.0 320.75 296.52 Max temperature in

Kelvin
sph -0.01 0.05 0.01 Specific humidity
pr -137.11 138.29 0.25 Precipitation in mm
pdsi -152.91 31.36 -1.23 Pressure
NDVI -32768.0 32767.0 5220.83 Normalized Difference

Vegetation Index
(NDVI)

population 0.0 221.11 0.21 Estimated number of
people in residence

erc -655.15 762.68 54.59 NFDRS fire danger
index energy release
component

PrevFireMask -1.0 1.0 -0.02 Previous day fire mask

to increase the state-of-the-art by 31% using the introduced

network, furthermore, we verify model generalizability and

balanced performance on our extended data set, and the results

are in Table IV.

DSC(X,Y ) =
2× |X ∩ Y |
|X|+ |Y | (9)

PR-AUC =

∫ 1

0

Precision(Recall) d(Recall) (10)

TABLE III: The original NDWS vs. our extended NDWS

Data set Temporal Geographical Total
Coverage Coverage Size

Original NDWS 2012-2020 United States 18545
Extended NDWS (ours) 2012-2023 North America 31760

TABLE IV: Comparison of different models when tested on our
extended NDWS (ours) data set

Methods Params Dice Score Precision Recall PR-AUC
U-net [25] 17M 0.3493 0.2945 0.3805 0.2945

Attention U-net [29] 8M 0.3650 0.3721 0.3759 0.3157
SU [30] 27M 0.3943 0.3669 0.4573 0.3555

ASU [14] 27M 0.4052 0.3915 0.4533 0.3760
FocalU-net [15] 25M 0.3460 0.3809 0.3319 0.3227

RevCol [31] 31M 0.2122 0.2170 0.3471 0.1176
ASUFM 35M 0.4066 0.4345 0.4096 0.3974

1540



Fig. 5: Qualitative comparison of the ASUFM and ASU [14] and Swin U-net [30] models. Here, white represents True Positives (TP), red
represents False Negatives (FN), and blue represents False Positives (FP). The last column depicts an upsampled modulator at encoder
layers 0 and 1, corresponding to the green block in Fig 3.

TABLE V: Comparison of different loss functions

Loss Function Dice Score Precision Recall PR-AUC
BCE 0.415 0.360 0.502 0.350
BCE + Focal Tversky 0.340 0.450 0.340 0.278

TABLE VI: ASUFM results with different input features, the 6 fea-
tures are Wind direction, precipitation, specific humidity, vegetation,
elevation, and previous day fire.

Input features Dice Score Precision Recall PR-AUC
6 features 0.4109 0.4301 0.4050 0.3728

12 features 0.3559 0.4778 0.2926 0.3556

C. Discussion

1) Limitations: Our work is an initial exploration of tailor-

ing current state-of-the-art segmentation techniques on wildfire

spread modeling with multi-spectral data. The challenging

nature of this problem, as highlighted in [7], compounded

with ambiguity from the MODIS data leaves this an open

research problem to be explored. Early experiments on various

input bands suggest that some features may have confounding

effects on the final prediction accuracy (see Table VI. for

example) rather than improvement. While this study focuses

on the input bands most likely to contribute to fire ignition and

propagation [32] [7], further examination of feature selection

could be useful. On the other hand, due to the high variability

and limited extensibility in available data sets for wildfire

spread, comparison across multiple sources becomes difficult.

Other factors not explored include finer temporal resolution,

other spatial resolution, and larger multi-modal models, which

may offer additional capacity for extracting diverse informa-

tion. Notably, [17] used FT (Focal Tversky) loss [33] for

training their CNN-based models to counter the majority of

pixels being background. However, our experiments in both

training solely on FT loss and pre-training with weight BCE

followed by FT loss, did not produce desirable results - details

can be found in Table V.

2) Potential applications: Many previous studies have de-

pended on specialized data that is challenging to acquire in

real-time, consequently limiting their practical applicability in

real-world scenarios. This work leverages GEE data which can

be easily extended to apply to a real-time prediction map. In

addition, we provide the pre-trained model weights that can

be fine-tuned on region-specific data.

3) Future work: [34] outlines additional publicly available

satellite based wildfire datasets and highlights the importance

of baseline models and datasets. In future work we aim to

look at incorporating input dimension from additional sources

such as LANDFIRE [35] which provides in-depth fuel and

1541



land information that may unlock better performance on spread

prediction. Meanwhile, datasets that are continuous temporally

remain scarce and we hope to continue developing models that

can make real-time predictions leveraging live remote-sensing

imagery.

V. CONCLUSION

This research presents a significant advancement in the

field of wildfire spread prediction using deep learning and

remote sensing data. By developing the ASUFM model, which

innovatively combines spatial attention and focal modulation

with the Swin U-net architecture, we have established a new

benchmark in predictive accuracy on the NDWS dataset.

Our expanded dataset, covering North America up to 2023,

provides an enriched foundation for further research and model

development. The ASUFM model not only demonstrates supe-

rior performance in predicting wildfire spread but also offers

a scalable and adaptable framework for real-time wildfire

monitoring. Looking ahead, we aim to enhance our model by

incorporating recursive inference for longer-term predictions,

expanding the dataset with additional feature bands, and

developing risk assessment tools for vulnerable populations.
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