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Abstract— Understanding the reasons behind a model's 

predictions is as important as achieving accurate results. The 

limited adoption of AI methods in fields like Energy and 

Industry is mainly attributed to the lack of trust, which is a 

crucial factor in user acceptance. Explainable AI is a recent 

approach to address this issue and enable the rapid deployment 

of AI in complex domains. This paper presents a framework for 

explainable anomaly detection and risk prognostics that utilizes 

an Ensembled Stacked Self-Supervised Model to augment 

predictive maintenance (XES3MaP). The explanation produced 

is evaluated utilizing local accuracy metric. The proposed 

framework is tested on real-world industrial cooling system 

data, on which out of the ten anomalies identified, eight were 

successfully linked to maintenance actions, while two were 

attributed to random sensor measurement disturbances. This 

prognostic outcome approach establishes a new benchmark in 

the field. 

Keywords— anomaly detection, ensemble method, stacking, 
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I. INTRODUCTION 

Predictive maintenance (PdM) serves as the backbone of 

industrial operations. It utilizes sensor data to safeguard asset 

health by identifying, analyzing, and tracking degradation, 

ultimately predicting failure progression. The three key 

activities  leveraged in PdM are: 
i. Anomaly Detection: Identifying deviations from 

normal system behavior through data analysis. 

ii. Failure Prognosis: Estimating the remaining useful 
life (RUL) of an asset before failure occurs. 

iii. Diagnostics: Classifying and pinpointing the root 
cause of equipment failure. 

However, Explainable AI (XAI) within the prognostic 

and health management (PHM) domain is still a nascent field. 

Widespread adoption of XAI knowledge by PHM 

stakeholders, both in research and industry, is crucial for 

building trust in AI and facilitating its legal implementation 

within the industrial sector. In industrial settings, anomaly 

detection plays a crucial role in predictive maintenance 

(PdM), enabling the identification of potential failures or 

malfunctions in industrial equipment. However, traditional 

maintenance approaches often fail to provide insights into the 

data patterns that drive maintenance decisions. Anomaly 

detection algorithms powered by deep learning (DL) have 

been successfully identifying anomalies that might have gone 

unnoticed otherwise. However, a major drawback lies in their 

lack of explainability, posing challenges in convincing 

domain experts to trust and adopt these systems. Explanations 

of why an instance is flagged as anomalous can enhance trust 

and enable experts to effectively address potential issues 

identified. The need for instance-level explanations was 

recognized in the 1970s to model the inexact reasoning 

process of medical experts [1], but has resurfaced due to the 

increasing complexity of ML models. 
XAI can address this challenge by illuminating anomalies 

and providing explanations for their occurrence. This 
enhanced understanding can guide proactive maintenance 
interventions, minimizing downtime and maximizing 
equipment lifespan. One such application for the 
explainability is for risk associated in an industrial cooling 
system employed in power transmission systems. Industrial 
cooling systems play a critical role in maintaining optimal 
operating temperatures by effectively dissipating the heat 
generated in thyristor valves within Converter Stations during 
power transmission. Regular maintenance of these cooling 
systems is essential to safeguard their optimal performance 
and prevent malfunctions. Conventional preventive and 
scheduled maintenance practices are currently employed, 
relying on FMECA (Failure Mode Effects and Criticality 
Analysis) to identify relevant failure modes. These failure 
modes are then analyzed using data from installed equipment 
sensors and measurement interfaces. 

II. USE-CASE DESCRIPTION 

Industrial systems deal with different types of anomalies 

that can turn into risks. This risk is a probability when there 

is deviation from the normal expected behavior. Considering 

a specific variable that is of concern according to the 

maintenance need through anomaly detection, the target 

variable is identified as 'liquid conductivity'. The electrical 

conductivity is a measure of the quality of the liquid used for 

cooling. Each cooling liquid has a relative constant range that 

is established as a baseline for comparing with the 

measurements during operations. The measurement of 

conductivity is very important in industrial application as it 

indicates the presence of the minerals, chemicals and other 

dissolved substances. When the dissolved ions increase, there 

is a high conductivity as ions carry electric charges in the 

liquid, that results in a certain amount of current passed 

through increasing the conductance level. This is harmful to 

the electronics in the object being cooled. In general, the 

conductivity is influence by changes temperatures. As 

temperature increases, the mobility of ions in the liquid 

changes which results in a change in conductivity. Thus, it is 

essential to maintain conductivity at stable levels through a 
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circuit for treatment where the impurities are removed. Then 

the treated water conductivity is again measured as it flows 

into the object being cooled. So the risks involved here are a) 

the treatments circuit may malfunction in performing the 

treatment process, b) the conductivity measurements may be 

high after the treatment circuit, c) there could be electric 

charges flowing to the electronics of the cooling object that 

is harmful. The use-case of the cooling system is already a 

complex circuit of operation with multiple variables of which 

some are derived and others measured. Any change in value 

of one variable, the values of the other variables also change, 

while few are designed to be stable. The related problem is 

with the assumption that there is knowledge of the causal 

structure behind data. 

 

    While identifying abnormal values through pre-defined 

thresholds is crucial, it is equally important to understand the 

root cause behind these deviations (high or low) to take 

appropriate actions. Current practices rely on manual analysis 

by domain experts, which can be time-consuming and 

resource-intensive. This highlights the need for a more 

efficient approach to enable faster interpretation and provide 

feature-level explanations for the model's predictions. By 

automatically pinpointing the cause of abnormalities, the 

system can facilitate quicker decision-making and improve 

overall process efficiency. 

III. RELATED WORK 

       This section summarizes the PdM related XAI works 

associated with anomaly detection and failure diagnosis. The 

work in [4, 17 ]  applies KernelSHAP, to generate local 

explanations for each anomaly detected by autoencoders. The 

paper [18] introduces a global XAI method, allowing for a 

more comprehensive understanding of the model's decision-

making process. The paper [20] presents a survey of  various 

XAI methods on multivariate industrial data, indicating that 

SHAP based explainer correctly identified the root cause of 

the anomalies. The work in [6] evaluates the effectiveness of 

anomaly detection and explainability algorithms to 

supplement Decision Support System insights in PdM and 

Root Cause Analysis for hydroelectric power plants. The 

results show that isolation forest and autoencoder performed 

the best and the use of SHAP provided explanation to the root 

cause and guided the user towards features related to 

anomaly. The paper [11] applies advanced attention based 

convolutional autoencoder for anomaly detection in 

industrial use-case, to identify risks. The [23] applies LSTM-

autoencoder for anomaly detection and explaining fault 

localization on multivariate data using ground truth provided 

by PLC. The paper [19] presents a framework for explainable 

anomaly detection and failure prognostic, combining a 

Bayesian DL model and Shapley additive explanations being 

effective on real-world gas turbine data. The research on 

bearings using DSASA (dynamic structure–adaptive 

symbolic approach), a cross-domain life prediction model 

that used historical run-to-failure data in [19] elaborates the 

RUL prediction. In [25] autoencoder anomaly detection is 

assisted by XAI. The paper [14] uses feed-forward neural 

network architecture with local interpretable model agnostic 

explainability for fouling prediction in the crossflow heat 

exchanger. 

Despite a culture of continuous improvement, 

surprisingly, industrial, manufacturing, and energy sectors 

are lagging in adopting AI for daily operations [12]. This 

apparent contradiction points to a key hurdle: trust. Unlike 

other sectors facing potential ethical concerns, industrial 

actors struggle with trusting AI decisions due to performance 

anxieties. Regulations surrounding AI often focus on 

transparency, fairness, privacy, and data security of 

algorithms. Transparency plays a crucial role in minimizing 

malfunctions and achieving desired AI quality goals. This is 

especially important due to the "black-box" nature of some 

AI techniques. DL, currently the most powerful AI method, 

is a prime example of a black-box model. While highly 

effective, its internal workings in generating predictions 

remain obscure. This opacity hinders AI adoption in high-risk 

sectors like industry and energy, where incomprehensible 

outcomes could lead to disastrous consequences for life, 

safety, and finances. These domain experts require more than 

just point estimates to be convinced of a course of action. 

The onus lies with the research community to bridge this trust 

gap. This is where XAI comes into play. XAI techniques aim 

to make AI models interpretable, allowing users to 

understand the rationale behind their predictions. By 

addressing the transparency issue, XAI can pave the way for 

wider AI adoption across various sectors. The field of XAI 

focuses on making AI models interpretable to humans. While 

the concept has existed for decades, recent years have 

witnessed a surge in global attention, as evidenced by 

initiatives from organizations like the Defense Advanced 

Research Projects Agency (DARPA) since 2016 [13]. This 

growing interest is further reflected in the increasing number 

of research articles dedicated to XAI. Therefore, the main 

objectives of this research are: 

i. To process and prepare  real industrial data for a case 

study use-case. 

ii. To construct anomaly detection model suing an 

ensemble of weak and strong learners for 

unsupervised use-case 

iii. To generate the prediction labels for anomaly 

detection 

iv. To demonstrate the SHAP explanation’s ability to 

improve prognostic task’s performance, which was 

absent from previous works. 

v. Derive the SHAP plot and interpret it. 

vi. Apart from SHAP plots, a custom function to derive 

the anomaly contribution score makes it easy for 

onwards task to read them and use the value, 

impossible with  visual chart. 

vii. To evaluate the explainability 

Note, that the goal of this paper is not to compare with other 

related algorithms, but to focus on highlighting the power of 

explainability in a complex and conservative power domain. 

Secondly, due to the novelty of the different models stacked 

with the meta-learner, there is one to one comparison. The 

secondary objectives are: 

i. To add model agnostic explainability to the 

collection of PHM-XAI articles, which is still 

lacking currently. 

ii. To validate the efficiency property of Shapley 

values and prove local accuracy of the explanation. 

While the application domain of the proposed approach is 

novel, the use of all variants of autoencoder for learning 



features from the same data, 5 model ensemble with meta 

learner, custom function to derive the explainability instead 

of the standard XAI SHAP plot ( contribution vi) , also add 

to the novelty.  

This rest of the paper is organized as follows. The 

methodology is presented in Section III, the results and 

discussion on the case study, in Section IV. Finally, the 

concluding remarks are given in Section V 

IV. METHODOLOGY 

This section describes the individual methods involved, 

followed by the overall proposed integrated framework. 

A. Ensemble Method: 

Ensemble is a collection of independent ML algorithms, 

have emerged as a powerful approach for anomaly detection, 

offering enhanced accuracy and robustness compared to 

individual algorithms for anomaly detection in real-world 

applications. A single anomaly detection algorithm may 

excel in identifying anomalies in specific datasets but 

struggle with others due to inherent limitations. Ensemble 

methods address this challenge by combining multiple 

algorithms, effectively mitigating the weaknesses of any 

single algorithm, and leveraging their collective strengths. 

This collective intelligence enables ensemble methods to 

provide more accurate and consistent anomaly detection 

results. By combining diverse algorithms, ensemble methods 

can achieve a more balanced trade-off between bias and 

variance, leading to improved generalization performance.  

Systematic literature reviews in [21, 22], highlight the 

effectiveness of ensemble methods to enhance the 

performance, in terms of generalization and robustness. This 

ability is crucial for anomaly detection, as it ensures that the 

model is not overly sensitive to noise or outliers while 

maintaining the ability to capture meaningful patterns in data.  

B. Number and type of Base models 

With an inspiration from [8] on ensemble deep learning, 

it is evident that two types of strategy are suitable for deep 

learning viz. (i) applying many different basic models using 

the same data and (ii) applying many different basic models 

using many different data samples. Building effective 

ensemble deep learning systems goes beyond just model 

selection. A well-designed architecture is key, requiring 

decisions on model types suited to the problem (often 3+ 

models) [8], optimal data splits (e.g., 80/20), and the entire 

deep learning pipeline. This pipeline includes data 

generation, training individual models, and choosing the best 

method to combine their outputs (fusion). Optimizing these 

elements is crucial for a powerful ensemble system. The  

homogeneous form of ensemble is challenged by the 

generation of diversity from the same learning algorithm. 

While heterogeneous ensembles consist of different numbers 

of baseline classifiers, each based on the same data and, the 

feature selection method is different for same training data. 

C. Stacking Method: 

In the stacking method the baseline learners are used 

simultaneously, as there is no data dependency, the fusion 

methods depends on the meta-learning method. Here, the 

predictions are from several models say m1 to mn to build a 

new model, and the new model makes predictions on the test 

dataset. Thus, it seeks to increase the predictive power of a 

model. The basic idea of stacking is to "stack" the predictions 

of m1 to mn. Here the baseliners adopted are autoencoder 

models and this is based on the success of autoencoder in 

various applications [11,23,24]. Autoencoders are neural 

networks that learn efficient representations of data. They 

compress the input data into a smaller hidden space 

(encoding) and then try to reconstruct the original data from 

that compressed version (decoding). By forcing the network 

to recreate the input, it learns useful features of the data. This 

difference , called the reconstruction error 𝜖, is computed by 

the Euclidean distance given by “(1)”.  

ϵ = √(xi − xi
′)T ⋅ (xi − xi

′)   (1) 

The inputs are then classified as either "Anomaly" or 

"Normal" based on their reconstruction error, 𝜖. If 𝜖 exceeds 

a predefined threshold value, the input is labeled as 

"Anomaly". Otherwise, it is labeled as "Normal". The 

threshold is determined as the max of the mean absolute error 

(mae) on the training data and is used as threshold on the test 

data to detect anomalies. The different base learners are 

different variation of the autoencoders. Two crucial 

components in the architecture of a stacking ensemble 

comprises of: 

• Base Models: Here five individual DL algorithms based 

on autoencoders, and its variants are used, to generate 

initial predictions labels for anomalies. Base models 

applied are conventional Autoencoder (AE), variational 

autoencoder, and three hybrid autoencoders namely, 

Convolutional Autoencoder (CAE), LSTM Autoencoder 

(LSTM-AE) and LSTM Variational Autoencoder 

(LSTM-VAE). The choice of the number of neurons in 

each layer, the latent space size, optimization of 

parameters, loss function for monitoring the training and 

testing is made accordingly. 

• Meta-Model: This is the super learner model that 

typically employs a simpler structure compared to the 

base models, allowing for a more interpretable and 

transparent representation of the ensemble's decision-

making process. Here a 3-layer ANN model is used. 

The base learning algorithms widely used in multiple 

experiments have been traditional ML methods like support 

vector machines (SVMs), decision trees (DTs), and ANNs. 

For unsupervised use-case autoencoders and its variants have 

been successful in learning the representations for anomaly 

detection, as in [22-25]. The specific choice of base learners 

depends on the characteristics of the anomaly detection task 

and the desired trade-off between accuracy, computational 

efficiency, and interpretability. To train the meta-model, the 

predictions made by the base models on a test dataset, to 

ensure that it is not biased and can generalize well to unseen 

instances. In this case each base model will output prediction 

(of anomaly or normal), which are then concatenated to form 

the stacked data input to the meta learner. The effectiveness 

of stacking hinges on the correlation between the predictions 

of the base models. When the predictions are uncorrelated or 

weakly correlated, the meta-model can effectively identify 

patterns and trends that individual models may miss. This 

synergy leads to improved prediction accuracy. Supporting 

the learning algorithms to better adapt to changing 

conditions, speed up learning processes by reducing the 



number of experiments and optimizing hyperparameters to 

achieve optimal results are the benefits from the meta-learner. 

Note: How the anomalies are detected and a comprehensive 

explanation of approach using self supervision with 

autoencoders, its hybrid variants, their underlying concepts, 

or the mathematical formulas involved is not the focus of this 

paper, as they are covered in [9, 10]. 

D.  SHAP 

SHAP is a model-agnostic approach for generating 
explanations to the model predictions by computing the 
contribution of each features to the prediction.  Shapley values 
stand out as a promising explanation methodology with a 
strong mathematical foundation and unique theoretical 
properties rooted in cooperative game theory, introduced by 
Lloyd Shapley in 1953 [7], where the key component is the 
“shapley value” that assess the influence of a player to form 
the coalitions. Thus, SHAP identifies the feature’s (the players 
in the game theory) impact on the overall prediction. It focuses 
on explaining a model's ‘f’ prediction at a specific point, x’ 
and these explanations are based on a value function, VS, 
which represents the model's prediction at x’ after setting a 
subset of variables, S, to specific values as in “(2)”.  

𝑣𝑠 = 𝐸[𝑓(𝑥)|𝑥𝑠 = 𝑥𝑠
′]    (2) 

We consider the individual contribution as well as the 
interaction between the features. There could also be different 
ways to share the contribution in a fair way using the shapley 
values. From the cooperative games theory the shapley values 
were originally proposed to distribute payouts fairly using the 
four axioms viz. efficiency, symmetry, dummy, and 
additivity. Efficiency dictates that the total payout across all 
features should equal the model's prediction. Symmetry 
demands that features with identical contributions receive 
equal payouts. Dummy asserts that a feature with no 
contribution should receive a payout of zero. Additivity 
ensures that the payout for a coalition of features is the sum of 
their individual payouts. To assess the importance of a feature 
‘i’ is based on analyzing how the set S will affect the function 
Vs, if the feature ‘i’ is added to S. Contribution φ(i), of the 
feature ‘i’ on the prediction f(x) is: 

𝜙𝑖(𝑓) = 𝛽𝑖𝑥𝑖 − 𝐸(𝛽𝑖𝑥𝑖)    (3) 

where  E(βjXj)  is the mean effect estimate for feature. The 
contribution is the difference between the feature effect minus 
the average effect. Feature contributions can be negative. 
Thus, the contribution of the shapley value is to payout, 
weighted and summed over all possible feature value 
combinations given by “(4)”: 

𝜙𝑖(𝑣𝑠) = ∑
|𝑆|!(𝑝−|𝑆|−1)!

𝑝!
(𝑣𝑠(𝑆 ∪ {ⅈ}) − 𝑣𝑠)

𝑆⊆{1,..𝑝}\{𝑖}
       (4) 

with S being the subset of features in the model, x being the 
vector of feature values of the instance to be explained and the 
number of features is p. Shapley values have several desirable 
properties, such as ensuring that features that do not contribute 
to the prediction get an attribution of zero. The feature value 
represents the numerical or categorical value of a feature in a 
specific instance. It serves as the input to the Shapley value 
calculation, which determines the feature's contribution to the 
model's prediction. Pipeline to generate XAI explanations on 
the unsupervised ML model is shown in Fig. 1. With the 
stacked base model outputs as input to train the meta-model to 
generate the output target labels (y’↋y). This final output 

labelled dataset ‘d’ (supervised data) from meta model is fed 
to a surrogate neural network models (M) that is trained with 
its own parameters (p). The key goal of this surrogate model 
is to minimize the loss function L(p,d) and is then used to 
generate the explanations using the feature attributions 
technique with shapely values. The benefit of this approach is 
that it can provide both local and global explanations. 
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 Fig. 1: Pipeline of XAI - SHAP explanation 

However, Shapley values are computationally expensive, 
especially for large models or high-dimensional inputs. The 
SHAP Python library is used to calculate SHAP values, and 
also visualize the importance of features using plots. 

E. Explainability 

XAI methods are distinguished into model-specific 
interpretability technique that depend on the internal structure 
of the specific ML model, and mode-agnostic interpretability 
where the explanatory component and the ML models are 
independent from each other. The paper [2] demonstrates that 
many existing saliency methods fail to maintain consistency, 
leading to misleading attributions and encourage the 
community to develop additional tests to evaluate the 
reliability of saliency methods. XAI research seeks to mimic 
human explanation methods that rely on researcher intuition 
rather than from psychology and cognitive science. [3, 5] 
surveys explainability with autoencoder. A post-hoc 
explainability is being considered here where the explanation 
is generated after the model is trained. Based on the scope, 
XAI methods can also be classified as local or global 
explanations. 

1) Local Explanations: 

Local explanations provide insights into how specific 

features contribute to a particular prediction made by a ML 

model. They focus on understanding the relationship between 

the input features and the model's output at a single data point. 

This type of explanation is useful for understanding how the 

model makes decisions on individual instances. The SHAP 

values for each individual prediction is calculated  to identify 

how the features contribute to that single prediction. 

2) Global Explanations: 

Global explanations,  provides a broader understanding of 

how the model works as a whole with the overall patterns and 

relationships between the features and the model's predictions 

across the entire dataset. This type of explanation is useful for 

understanding the model's behavior in general and identifying 

the most influential features. SHAP values not only show 

feature importance but also show direction whether the 

feature has a positive or negative impact on predictions. 
Local and global explanations serve different purposes and 

complement each other. In many cases, it is helpful to use a 
combination of both local and global explanations to gain a 
comprehensive understanding of a ML model. SHAP offers 
various approximations to suit different use cases, in this 
work, KernelSHAP that combines the Linear LIME [25] and 



SHAP algorithms is applied. Multiple measures for evaluating 
explanations have been proposed in ISO [26]. One such 
property is the local accuracy of the SHAP examined using a 
waterfall plot. It establishes that the sum of the feature 
contributions, is equal to prediction of 𝑥 or 𝑓(𝑥), minus the 
average prediction, E(𝑓(x)). 

 The SHAP values translate to indicate a directionality to 
show how features impact the output in a more intuitive way, 
with a plus in red color indicating positive impact on the 
prediction and minus in blue means negative impact. For 
model explainability in machine learning, the SHAP values 
helps understand the model at row and feature level. 

F. Explanation Visualization 

This section details the visualization methods used to 

represent local and global explanations: 

• Local Explanations: Force plots and waterfall plots are 

employed to illustrate the impact of individual features 

on a specific instance's prediction. 

o Force Plot: This plot uses colored bars to 

represent the contribution of each feature. The 

bar length corresponds to the strength (positive 

or negative) of the feature's influence on the 

prediction. Red bars indicate features pushing 

the prediction upwards, while blue bars indicate 

features pulling it downwards. This 

visualization is particularly useful for 

understanding anomalies. 

o Waterfall Plot: This plot arranges feature 

contributions in a bar-like format, with the most 

influential features at the top and the least 

influential at the bottom, resembling a 

waterfall. Color-coding remains consistent with 

the force plot, clearly showing the direction of 

each feature's influence. Waterfall plots are 

used to verify the local accuracy and 

consistency of explanations. 

• Global Explanations: Summary plots are used to 

highlight the most influential features across a dataset. 

These plots rank features based on their contribution 

strength and the direction of their forces. This 

information was leveraged to improve prognostic 

accuracy by focusing on the most critical features.  

In this paper, a custom function is also written to give a 

quantitative representation of the explanations. 

G. Human-in-the-loop 

A radical approach is to embed human experts into the ML 
workflow, integrating them into physical feedback loops 
[15,17], continuously providing feedback to the learning 
system to improve its performance and optimize its 
parameters. This synergistic approach harnesses the strengths 
of both human intelligence and machine learning, leading to 
more effective and reliable decision-making [16]. To ensure 
model confidence and reliability, a domain expert conducts an 
iterative validation process. This is to evaluates the model's 
outputs and provides feedback to refine the model parameters 
or training data. This loop continues until the model's 
performance meets the desired level of confidence. Thus, in 
this paper, apart from formal validation methods, the domain 
expert also validates the results for interpretation. Specific 
evaluations is done in each application domain with experts’ 
supervision. 

H. Overall Integerated Framework 

Using all the individual methods and concept described, 
an end-to-end framework named as XES3MaP: Explainable 
Risks Identified from  Ensembled Stacked Self-Supervised 
Model to Augment Predictive Maintenance is proposed. The 
two main parts integrated are the anomaly detection model and 
the explainability model ( depicted in Fig. 1). The overall 
approach with steps in the workflow numbered and marked is 
shown in    Fig. 2 
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   Fig. 2: Overall framework  

1) Step 0 and 1: Data preparation 
The operational data is aggregated from the sensor 

measurements of the cooling subsystem using SCADA system 
of a real HVDC station, anonymized various features, 
including temperature, cooling liquid conductivity, liquid 
level, pressure, and flow. The data collection period spans 
from January 2020 to June 2023 and was preprocessed to 
resample to uniform frequency, removing missing and noisy 
data with support of domain experts. The dataset is normalized 
using StandardScalar, to transform each feature to have a 
mean of 0 and a standard deviation of 1. 

2) Step 2: Base Model Training 
The five identified base models are trained individually on 

the processed dataset that is split for training and testing using 
80-20% strategy. Experiment parameters are as in  TABLE I.  

TABLE I.  EXPERIMENT PARAMETERS 

parameters Value range used for best results 

TimeSteps 24 hr for convolutional & LSTM models 

Batch size 16 to 64 

Learning rate 0.01 to 0.0001 

Epochs 
50 to 500 with callback to montior the loss, with 

patience=5, on a validation split of 10% 

Activiation 

function 
Relu, Leakyreul,tanh & sigmoid 

No. of layers 3 dense layer in each model 

 

By using cross-validations (5-fold), the best hyperparameters 

that result in the best generalization performance are selected. 

This approach balances between training the model 

effectively and avoiding overfitting, which occurs when the 

model memorizes the training data too well. 

3) Step 3 and 4:  Meta Model training  

The prediction outputs of the base models on the test data set 

are concatenated to form the new stacked input (step 3 in 

   Fig. 2) to the meta model. Then 



the meta-model is trained in isolation, to get its own final 

predictions of the anomalies. 

4) Step 5 and 6: Explanations with SHAP 
 Once, the final prediction is made by the meta model, the 

pipeline steps of the XAI-SHAP process as shown in Fig. 1 is 
triggered. The explanation is derived for the anomalous 
instances where the difference (error) between the input and 
the reconstructed value is high. The explanatory models 
provide explanation for why an instance was marked as 
anomaly by the predicting model. The method here is to 
compute the SHAP values of the reconstructed features and 
relate them to the true values of the input that is anomalous.  

V. RESULTS AND DISCUSSIONS 

The overall results in TABLE II. shows that the mae score 
of meta models is higher than the individual base model. 

TABLE II.  RESULTS FROM ALL MODELS 

Model 

Name 
AE VAE CAE LSTM-

AE 

LSTM-

VAE 

Meta-

Model 

MAE score 0.43 0.453 0.007 0.116 0.484 0.0064 

Now to apply the SHAP XAI to explain why an anomaly is 
flagged as anomalous by the final model. SHAP Plot of few 
indexes of the test data samples that is flagged as an anomaly 
is shown in Fig. 3. Note, the name of the parameters are short 
abbreviation used in the experiment and random indexes of 2 
samples [index 16 & 10 ] marked as anomalous by the model 
is taken for the SHAP interpretation. The features marked by 
the red in each of the plot cause an increase of the contribution 
to anomaly value while the features marked in blue causes a 
decrease. Taking the case of index 16 (first image), an increase 
in supply temperature is the main cause of the anomaly, and 
in turn the change in available number of fans to cool the 
system. This justifies the fact that increase in supply 
temperature, requires more number of fans to be turned ON to 
achieve required cooling. And here, to turn them ON 
(automatic by SCADA), sufficient fans may not be ready 
(among the groups of fans in the system) or may be unhealthy. 
The service engineer can check the status and take necessary 
actions accordingly. 

 Now, taking the index 10, the flag is due to changes 

in the liquid flow values (that is kept almost stable during 

operation). This was identified to be due to the opening of the 

bypass switch as also indicated as the key contributing 

parameter. As seen in Fig. 3 the features that assert positive 

impact push output value higher. In this case, the bypass 

opening/closing is normal operation process during different 

outdoor weather conditions. And needs to be accounted in the 

data for training. And thus, by domain this is not an anomaly 

as it is a sign of the actual operation process where there is a 

change from the normal operations. 

 

 

 

  Fig. 3: SHAP Interpretation for 3 anomalous indexes 

Now, validation of the local accuracy for index 16, using 

“(3)” and “(4)” is as follows: 

 

f(x)=2.683, Ef(x)=-7.742, and 𝜙𝑖 = 2.683 − (−7.742) = 10.42 

 𝜙𝑖(𝑣𝑠) = 4.6 + 3.81 + 0.87 + 0.63 + 0.49 + 0.34 + 0.17 − 0.25
− 0.22 − 0 − 02 = 10.42 

 

Similarly for index 10, it is : 

 

f(x)=-5.857, Ef(x)=-7.742, and 𝜙𝑖 = 1.885 

 𝜙𝑖(𝑣𝑠) = 1.5 + 0.84 + 0.15 + 0.1 − 0.28 − 0.16 − 0.08 − 0.08
− 0.07 − 0.02 = 1.9 

 

     Alternatively, among the visual plot representations of 

shap value, a custom function to return a dictionary with 

explanations for top N records that contribute highest to the 

anomaly prediction as shown in Fig. 4. 

 

Fig. 4: Custom function showing highest contributor for anomaly 

Here, taking one example of the explanation of a randomly 
picked index [141] marked as ‘1’ in red indicates that the 
anomaly is mainly due to 2 features, that is values of 
conductivity both in main and treatment circuit (marked as 
VCCP_MAIN_COND and E1_BQ4_COND). While there 
are different ways one can validate the explainability, one of 
the reason could be that the treated liquid conductivity 
measurement is not as expected, due to which the main 
conductivity value is affected.  

VI. CONCLUSION 

This paper presents a method for interpreting anomaly 
prediction results from the model, that can be utilized in 
various real-world domains including other industrial sectors. 
It is necessary to be aware of the data-driven nature of the 
methods, as there is no automatic way to guarantee the 
correctness of the interpretation. While the decision-making 
processes is supported with this method, it does not replace 
the critical roles of human experts. XAI tries to overcome the 



"black-box" apprehensions from the industrial actors who 
struggle with trusting AI decisions due to performance 
anxieties. It illuminates anomalies and provides explanations 
for their occurrence. This enhanced understanding can guide 
proactive maintenance interventions, minimizing downtime 
and maximizing equipment lifespan. The adaptation of model 
agnostic KernelSHAP XAI to explain the final anomalies 
detected. Such type of explanation either in form of visual 
plots or with numerical values explain the feature 
contributions to speed up service or maintenance activity 
predictively to diagnose abnormal scenarios rather than being 
reactive. Thus, bridging the gap between data-driven insights 
and human comprehension in the industrial application.  

The results show how the post-hoc SHAP XAI technique 
describes why it made certain decisions of the anomaly 
detected. The case study example shows how feature 
contributions define the anomaly index to  provoke a 
maintenance action or a further validation step (like in case of 
the sensor disturbance). The explainable AI algorithm SHAP 
makes use of the shap values. Each feature contributes 
differently to the prediction. The shap values is used to find 
out the marginal contribution of each feature in the prediction. 
The shapley values formula is adapted to explain models, by 
dividing the model prediction amongst it features. The shapley 
values tell us the average contribution of the features to the 
predictions. The multivariate features, have the correlations 
among the features and the interpretability also brings out 
these aspects. As a result, the XAI explanation gave insights 
into the reasonings by making the whole system transparent. 
Then, the explanation produced is evaluated utilizing local 
accuracy metric. As the goal is to show the value of the XAI 
in the industrial domain to ensure Trust in the Deep learning 
models predictive performance among the stakeholders, there 
is no comparison study carried with other related algorithms. 

The diversity in ensemble deep learning with several data 
samples is limited by the computation cost and the availability 
of suitable data to be sampled. The computational complexity 
of the ensemble approach is an additional essential aspect to 
consider among others like predictive performance accuracy. 
The computational cost is distributed on two complexity 
metrics: cost of training and creating the ensemble model and 
the cost of predicting a new instance. 
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