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Abstract— Understanding the reasons behind a model's 

predictions is as important as achieving accurate results. The 

limited adoption of AI methods in fields like Energy and 

Industry is mainly attributed to a lack of trust, which is a crucial 

factor in user acceptance. Explainable AI is a recent approach 

to address this issue and enable the rapid deployment of AI in 

complex domains. This paper presents a framework for 

explainable anomaly detection and risk prognostics that utilizes 

an Ensembled Stacked Self-Supervised Model and Shapley 

additive approach to generate local and global explanations. The 

quality of the explanations is evaluated with the assistance of 

human experts to enhance model performance and streamline 

an automated online approach. The explanation produced is 

evaluated utilizing local accuracy metric. The proposed 

framework is tested on real-world industrial cooling system 

data, on which out of the ten anomalies identified, eight were 

successfully linked to maintenance actions, while two were 

attributed to random sensor measurement disturbances. This 

prognostic outcome establishes a new benchmark in the field. 

Keywords— anomaly detection, ensemble method, stacking, 

SHAP, Explainable AI, XAI 

I. INTRODUCTION 

Predictive maintenance (PdM) serves as the backbone of 
industrial operations. It utilizes sensor data to safeguard asset 
health by identifying, analyzing, and tracking degradation, 
ultimately predicting failure progression. The three key 
activities  leveraged in PdM are: 

i. Anomaly Detection: Identifying deviations from 
normal system behavior through data analysis. 

ii. Failure Prognosis: Estimating the remaining useful 
life (RUL) of an asset before failure occurs. 

iii. Diagnostics: Classifying and pinpointing the root 
cause of equipment failure. 

However, Explainable AI (XAI) within the prognostic and 
health management (PHM) domain is still a nascent field. 
Widespread adoption of XAI knowledge by PHM 
stakeholders, both in research and industry, is crucial for 
building trust in AI and facilitating its legal implementation 
within the industrial sector. In industrial settings, anomaly 
detection plays a crucial role in predictive maintenance 
(PdM), enabling the identification of potential failures or 
malfunctions in industrial equipment. However, traditional 
maintenance approaches often fail to provide insights into the 
data patterns that drive maintenance decisions. Anomaly 
detection algorithms powered by deep learning (DL) have 
been successfully identifying anomalies that might have gone 
unnoticed otherwise. However, a major drawback lies in their 

lack of explainability, posing challenges in convincing 
domain experts to trust and adopt these systems. Explanations 
of why an instance is flagged as anomalous can enhance trust 
and enable experts to effectively address potential issues 
identified. The need for instance-level explanations was 
recognized in the 1970s to model the inexact reasoning 
process of medical experts [1], but has resurfaced due to the 
increasing complexity of ML models. 

XAI can address this challenge by illuminating anomalies 
and providing explanations for their occurrence. This 
enhanced understanding can guide proactive maintenance 
interventions, minimizing downtime and maximizing 
equipment lifespan. One such application for the 
explainability is for risk associated in an industrial cooling 
system employed in power transmission systems. Industrial 
cooling systems play a critical role in maintaining optimal 
operating temperatures by effectively dissipating the heat 
generated in thyristor valves within Converter Stations during 
power transmission. Regular maintenance of these cooling 
systems is essential to safeguard their optimal performance 
and prevent malfunctions. Conventional preventive and 
scheduled maintenance practices are currently employed, 
relying on FMECA (Failure Mode Effects and Criticality 
Analysis) to identify relevant failure modes. These failure 
modes are then analyzed using data from installed equipment 
sensors and measurement interfaces. 

II. RELATED WORK 

This section summarizes the PdM related XAI 

works associated with anomaly detection and failure 

diagnosis. [4, 17 ]  applies KernelSHAP, to generates local 

explanations for each anomaly detected by autoencoders. 

[18] introduce a global XAI method, allowing for a more 

comprehensive understanding of the model's decision-

making process. [20] presents a survey of  various XAI 

methods on multivariate Industrial data, indicating that 

SHAP based explainer correctly identified the root cause of 

the anomalies. [6] evaluates the effectiveness of anomaly 

detection and explainability algorithms to supplement 

Decision Support System insights in PdM and Root Cause 

Analysis for hydroelectric power plants. The results shows 

that isolation forest and autoencoder performed the best and 

use of SHAP provided explanation to the root cause and guide 

the user towards features related to anomaly. [11] applies 

advanced attention based convolutional autoencoder for 

anomaly detection in industrial use-case, to identify risks. 

[23] applies LSTM-autoencoder for anomaly detection and 

explaining fault localization on multivariate data using 
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ground truth provided by PLC. [19] presents a framework for 

explainable anomaly detection and failure prognostic, 

combining a Bayesian DL model and Shapley additive 

explanations being effective on real-world gas turbine data. 

[19] elaborate the RUL prediction for slewing bearings using 

DSASA (dynamic structure–adaptive symbolic approach), a 

cross-domain life prediction model that used historical run-

to-failure data. In [25] autoencoder anomaly detection is 

assisted by XAI. [14] uses feed-forward neural network 

architecture with local interpretable model agnostic 

explainability for fouling prediction in the crossflow heat 

exchanger. 

Despite a culture of continuous improvement, 

surprisingly, industrial, manufacturing, and energy sectors 

are lagging in adopting AI for daily operations [12]. This 

apparent contradiction points to a key hurdle: trust. Unlike 

other sectors facing potential ethical concerns, industrial 

actors struggle with trusting AI decisions due to performance 

anxieties. Regulations surrounding AI often focus on 

transparency, fairness, privacy, and data security of 

algorithms. Transparency plays a crucial role in minimizing 

malfunctions and achieving desired AI quality goals. This is 

especially important due to the "black-box" nature of some 

AI techniques. DL, currently the most powerful AI method, 

is a prime example of a black-box model. While highly 

effective, its internal workings in generating predictions 

remain obscure. This opacity hinders AI adoption in high-risk 

sectors like industry and energy, where incomprehensible 

outcomes could lead to disastrous consequences for life, 

safety, and finances. These Domain experts require more than 

just point estimates to be convinced of a course of action. 

The onus lies with the research community to bridge this trust 

gap. This is where XAI comes into play. XAI techniques aim 

to make AI models interpretable, allowing users to 

understand the rationale behind their predictions. By 

addressing the transparency issue, XAI can pave the way for 

wider AI adoption across various sectors. The field of XAI 

focuses on making AI models interpretable to humans. While 

the concept has existed for decades, recent years have 

witnessed a surge in global attention, as evidenced by 

initiatives from organizations like the Defense Advanced 

Research Projects Agency (DARPA) since 2016 [13]. This 

growing interest is further reflected in the increasing number 

of research articles dedicated to XAI. 

Therefore, the main objectives of this research are: 

i. To construct heterogenous DL models for 

unsupervised use-case 

ii. To construct stacked ensemble model with meta 

learning for anomaly detection 

iii. To process and prepare a real Industrial data for a 

case study use-case. 

iv. To demonstrate the SHAP explanation’s ability to 

improve prognostic task’s performance, which was 

absent from previous works. 

v. Derive the SHAP plot and interpret it. 

vi. Apart from SHAP plots, a custom function to derive 

the anomaly contribution score makes it easy for 

onwards task to read them and use the value, unlike 

visual chart. 

vii. To conduct explanation evaluation, which is clearly 

deficient from previous XAI literature. 

Note, that the goal of this paper is not to compare with other 

related algorithms, but to focus on the highlighting the power 

of explainability in a complex and conservative power 

domain. Secondly due to the novelty of the different models 

stacked with the meat-learner, there is one to one comparison. 

The secondary objectives are: 

i. To add model agnostic explainability to the 

collection of PHM-XAI articles, which is still 

lacking currently. 

ii. To prove the local accuracy of the explanation to 

validates the efficiency property of Shapley values. 

While the application domain of the proposed approach is 

novel, the use of all variants of autoencoder for learning 

features from the same data, 5 model ensemble with meta 

learner, custom function to derive the explainability instead 

of the standard XAI SHAP plot ( contribution vi) , also add 

to the novelty.  

This rest of the paper is organized as follows. The 

methodology is presented in Section III, the results and 

discussion on the case study, in Section IV. Finally, the 

concluding remarks are given in Section V 

III. METHODOLOGY 

A. Ensemble Method: 

Ensemble is a collection of independent ML algorithms, 

have emerged as a powerful approach for anomaly detection, 

offering enhanced accuracy and robustness compared to 

individual algorithms for anomaly detection in real-world 

applications. A single anomaly detection algorithm may 

excel in identifying anomalies in specific datasets but 

struggle with others due to inherent limitations. Ensemble 

methods address this challenge by combining multiple 

algorithms, effectively mitigating the weaknesses of any one 

algorithm, and leveraging their collective strengths. This 

collective intelligence enables ensemble methods to provide 

more accurate and consistent anomaly detection results. By 

combining diverse algorithms, ensemble methods can 

achieve a more balanced trade-off between bias and variance, 

leading to improved generalization performance. A 

systematic literature review in [21,22], highlights the 

effectiveness of ensemble methods to enhance the 

performance, in terms of generalization and robustness. This 

ability is crucial for anomaly detection, as it ensures that the 

model is not overly sensitive to noise or outliers while 

maintaining the ability to capture meaningful patterns in data.  

B. Number and type of Base models 

With an inspiration from [8] on ensemble deep learning, 

it is evident that two types of strategy are suitable for deep 

learning viz. (i) applying many different basic models using 

the same data and (ii) applying many different basic models 

using many different data samples. Building effective 

ensemble deep learning systems goes beyond just model 

selection. A well-designed architecture is key, requiring 

decisions on model types suited to the problem (often 3+ 

models) [8], optimal data splits (e.g., 80/20), and the entire 

deep learning pipeline. This pipeline includes data 

generation, training individual models, and choosing the best 

method to combine their outputs (fusion). Optimizing these 

elements is crucial for a powerful ensemble system. The  

homogeneous form of ensemble is challenged by the 



generation of diversity from the same learning algorithm. 

While heterogeneous ensembles consist of different numbers 

of baseline classifiers, each based on the same data and, the 

feature selection method is different for the same training 

data. Homogeneous ensemble methods are more appealing to 

researchers since they are easier to understand and apply. 

C. Stacking Method: 

A stacking method uses parallel ensemble techniques 

where baseline learners are generated simultaneously, as 

there is no data dependency, and the fusion methods depend 

on the meta-learning method. Here, the predictions are from 

several models say m1 to mn to build a new model, and the 

new model make predictions on the test dataset. Thus, seeks 

to increase the predictive power of a model. The basic idea of 

stacking is to "stack" the predictions of m1 to mn. Here the 

baseliners adopted are autoencoders models and this is based 

on the success of autoencoder in various applications 

[11,23,24]. Autoencoders are neural networks that learn 

efficient representations of data. They compress the input 

data into a smaller hidden space (encoding) and then try to 

reconstruct the original data from that compressed version 

(decoding). By forcing the network to recreate the input, it 

learns useful features of the data. This difference called the 

reconstruction error 𝜖 is computed by the Euclidean distance 

given by “(1)”.  

ϵ = √(xi − xi
′)T ⋅ (xi − xi

′)    (1) 

The inputs are then classified as either "Anomaly" or 

"Normal" based on their reconstruction error, 𝜖. If 𝜖 exceeds 

a predefined threshold value, the input is labeled as 

"Anomaly". Otherwise, it is labeled as "Normal". The 

threshold is determined as the max of the mean absolute error 

(mae) on the training data and is used as threshold on the test 

data to detect anomalies. The different base learners are 

different variation of the autoencoders. 

Two crucial components in the architecture of a stacking 

ensemble comprises of: 

• Base Models: Here five individual DL algorithms based 

on autoencoders, and its variants are used, to generate 

initial predictions. Base models applied are conventional 

Autoencoder (AE), variational autoencoder, and three 

hybrid autoencoders namely, Convolutional 

Autoencoder (CAE), LSTM Autoencoder (LSTM-AE) 

and LSTM Variational Autoencoder (LSTM-VAE). The 

choice of the number of neurons in each layer, the latent 

space size, optimization of parameters, loss function for 

monitoring the training and testing is made accordingly. 

• Meta-Model: This is the super learner model that 

typically employs a simpler structure compared to the 

base models, allowing for a more interpretable and 

transparent representation of the ensemble's decision-

making process. Here a 3-layer ANN model is used. 

The base learning algorithms widely used in multiple 

experiment have been traditional ML methods like support 

vector machines (SVMs), decision trees (DTs), and ANNs. 

For unsupervised use-case autoencoders and its variants have 

been successful in learning the representations for anomaly 

detection, as in [22-25]. The specific choice of base learners 

depends on the characteristics of the anomaly detection task 

and the desired trade-off between accuracy, computational 

efficiency, and interpretability. To train the meta-model, the 

predictions made by the base models on a test dataset, to 

ensure that it is not biased and can generalize well to unseen 

instances. In this case each base model will output prediction 

(of anomaly or normal), which are then concatenated to form 

the stacked data input to the meta learner. The effectiveness 

of stacking hinges on the correlation between the predictions 

of the base models. When the predictions are uncorrelated or 

weakly correlated, the meta-model can effectively identify 

patterns and trends that individual models may miss. This 

synergy leads to improved prediction accuracy. Helping 

learning algorithms better adapt to changing conditions, 

speeding up learning processes by reducing the number of 

experiments required and optimizing hyperparameters to 

achieve optimal results are the benefits from the meta-learner. 

Note: How the anomalies are detected and a comprehensive 

explanation of autoencoders, its variants or the hybrid 

autoencoder models, their underlying concepts, or the 

mathematical formulas involved is not the focus of this paper 

and hence not covered here, but found in [9, 10]. 

D.  SHAP (Shapley Values) 

SHAP is a model-agnostic approach for generating 
explanations to the model predictions by computing the 
contribution of each features to the prediction.  Shapley values 
stand out as a promising explanation methodology with a 
strong mathematical foundation and unique theoretical 
properties rooted in cooperative game theory, introduced by 
Lloyd Shapley in 1953 [7], where the key component is the 
“shapley value” that assess the influence of a player to form 
the coalitions. Thus, SHAP identifies the feature’s (the players 
in the game theory) impact on the overall prediction. It focuses 
on explaining a model's ‘f’ prediction at a specific point, x’ 
and these explanations are based on a value function, VS, 
which represents the model's prediction at x’ after setting a 
subset of variables, S, to specific values as in “(2)”.  

 𝑣𝑠 = 𝐸[𝑓(𝑥)|𝑥𝑠 = 𝑥𝑠
′]   (2) 

Shapley values were originally proposed to distribute 
payouts fairly in cooperative games and are the only solution 
based on axioms of efficiency, symmetry, dummy, and 
additivity. Efficiency dictates that the total payout across all 
features should equal the model's prediction. Symmetry 
demands that features with identical contributions receive 
equal payouts. Dummy asserts that a feature with no 
contribution should receive a payout of zero. Additivity 
ensures that the payout for a coalition of features is the sum of 
their individual payouts. To assess the importance of a feature 
‘i’ is based on analyzing how the set S will affect the function 
Vs, if the feature ‘i’ is added to S. Contribution φ(i), of the 
feature ‘i’ on the prediction f(x) is: 

𝜙𝑖(𝑓) = 𝛽𝑖𝑥𝑖 − 𝐸(𝛽𝑖𝑥𝑖)   (3) 

where  E(βjXj)  is the mean effect estimate for feature. The 
difference between the feature effect minus the average effect 
is the contribution. Feature contributions can be negative. 
Thus, the contribution of the shapley value is to payout, 
weighted and summed over all possible feature value 
combinations given by “(4)”: 

𝜙𝑖(𝑣𝑠) = ∑
|𝑆|!(𝑝−|𝑆|−1)!

𝑝!
(𝑣𝑠(𝑆 ∪ {ⅈ}) − 𝑣𝑠)

𝑆⊆{1,..𝑝}\{𝑖}
       (4) 

with S being the subset of features in the model, x being the 
vector of feature values of the instance to be explained and the 
number of features is p. Shapley values have several desirable 
properties, such as ensuring that features that do not contribute 



to the prediction get an attribution of zero. The feature value 
represents the numerical or categorical value of a feature in a 
specific instance. It serves as the input to the Shapley value 
calculation, which determines the feature's contribution to the 
model's prediction. Pipeline to generate XAI explanations on 
the unsupervised ML model is shown in Fig. 1. With the 
stacked base model outputs as input to train the meta-model to 
generate the output target labels (y’↋y). This final output 
labelled dataset ‘d’ (supervised data) from meta model is fed 
to a surrogate neural network models (M) that is trained with 
its own parameters (p). The key goal of this surrogate model 
is to minimize the loss function L(p,d) and is then used to 
generate the explanations using the feature attributions 
technique with shapely values. The benefit of this approach is 
that it can provide both local and global explanations that is 
not offered in. 

Ouput
(x, y)

 Surrogate 

Neural network 

model (M)

Meta-

Model

SHAP-

XAI

Shapley values

(explanations)
Y 

M(x)

Labelled data 
from base-

models p

 

 Fig. 1: Pipeline of XAI - SHAP explanation 

However, Shapley values are computationally expensive, 
especially for large models or high-dimensional inputs. 

E. Explainability 

XAI methods are distinguished into model-specific 
interpretability technique that depend on the internal structure 
of the specific ML model, and mode-agnostic interpretability 
where the explanatory component and the ML models are 
independent from each other. [2] demonstrates that many 
existing saliency methods fail to maintain consistency, leading 
to misleading attributions and encourage the community to 
develop additional tests to evaluate the reliability of saliency 
methods. XAI research seeks to mimic human explanation 
methods that rely on researcher intuition rather than from 
psychology and cognitive science. [3, 5] surveys 
explainability with autoencoder. A post-hoc explainability is 
being considered here where the explanation is generated after 
the model to be explained is trained. Based on the scope, XAI 
methods can also be classified as local or global explanations. 

1) Local Explanations: 

Local explanations provide insights into how specific 

features contribute to a particular prediction made by a ML 

model. They focus on understanding the relationship between 

the input features and the model's output at a single data point. 

This type of explanation is useful for understanding how the 

model makes decisions on individual instances. 

2) Global Explanations: 

Global explanations,  provides a broader understanding of 

how the model works as a whole with the overall patterns and 

relationships between the features and the model's predictions 

across the entire dataset. This type of explanation is useful for 

understanding the model's behavior in general and identifying 

the most influential features. 
 Local and global explanations serve different 

purposes and complement each other. In many cases, it is 
helpful to use a combination of both local and global 
explanations to gain a comprehensive understanding of a ML 
model. SHAP offers various approximations to suit different 

use cases, in this work, KernelSHAP that combines the Linear 
LIME [25] and SHAP algorithms is applied. Multiple 
measures for evaluating explanations have been proposed in 
ISO [26]. One such property is the local accuracy of the SHAP 
examined using a waterfall plot. It establishes that the sum of 
the feature contributions, is equal to prediction of 𝑥 or 𝑓(𝑥), 
minus the average prediction, E(𝑓(x)). 

Overall, XAI plays a critical role in building trust and 
promoting the responsible use of AI across various domains. 

F. Explanation Visualization 

This section details the visualization methods used to 

represent local and global explanations: 

• Local Explanations: Force plots and waterfall plots are 

employed to illustrate the impact of individual features 

on a specific instance's prediction. 

o Force Plot: This plot uses colored bars to 

represent the contribution of each feature. The 

bar length corresponds to the strength (positive 

or negative) of the feature's influence on the 

prediction. Red bars indicate features pushing 

the prediction upwards, while blue bars indicate 

features pulling it downwards. This 

visualization is particularly useful for 

understanding anomalies. 

o Waterfall Plot: This plot arranges feature 

contributions in a bar-like format, with the most 

influential features at the top and the least 

influential at the bottom, resembling a 

waterfall. Color-coding remains consistent with 

the force plot, clearly showing the direction of 

each feature's influence. Waterfall plots are 

used to verify the local accuracy and 

consistency of explanations. 

• Global Explanations: Summary plots are used to 

highlight the most influential features across a dataset. 

These plots rank features based on their contribution 

strength and the direction of their forces. This 

information was leveraged to improve prognostic 

accuracy by focusing on the most critical features.  

In this paper, a custom function is also written to give a 

quantitative representation of the explanations. 

G. Human-in-the-loop 

A radical approach is to embed human experts into the ML 
workflow, integrating them into physical feedback loops 
[15,17], continuously providing feedback to the learning 
system to improve its performance and optimize its 
parameters. This synergistic approach harnesses the strengths 
of both human intelligence and machine learning, leading to 
more effective and reliable decision-making [16]. To ensure 
model confidence and reliability, a domain expert conducts an 
iterative validation process. This is to evaluates the model's 
outputs and provides feedback to refine the model parameters 
or training data. This loop continues until the model's 
performance meets the desired level of confidence. Thus, in 
this paper, apart from formal validation methods, the domain 
expert also validates the results with explainability. 

H. Overall Integerated Framework 

Using all the individual methods and concept described, 
an end-to-end framework is proposed in   



 Fig. 2. The several steps in the workflow are numbered and 
marked in the figure. 
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   Fig. 2: Overall framework  

1) Step 0 and 1: Data preparation 
The operational data is aggregated from the sensor 

measurements of the cooling subsystem using SCADA system 
of a real HVDC station, anonymized various features, 
including temperature, cooling liquid conductivity, liquid 
level, pressure, and flow. The data collection period spans 
from January 2020 to June 2023 and is preprocessed to 
resample to uniform frequency, removing missing and noisy 
data with support of domain experts. The dataset is 
normalization using StandardScalar, to transforms each 
feature to have a mean of 0 and a standard deviation of 1. 

2) Step 2: Base Model Training 
The five identified base models are trained individually on 

the processed dataset that is split for training and testing using 
80-20% strategy. Experiment parameters are as in  TABLE I.  

TABLE I.  EXPERIMENT PARAMETERS 

parameters Value range used for best results 

TimeSteps 24 hr for convolutional & LSTM models 

Batch size 16 to 64 

Learning rate 0.01 to 0.0001 

Epochs 
50 to 500 with callback to montiro the loss, with 

patience=5, on a validation split of 10% 

Activiation 

function 
Relu, Leakyreul,tanh & sigmoid 

No. of layers 3 dense layer in each model 

By using cross-validations (5-fold), the best hyperparameters 

that result in the best generalization performance is selected. 

This approach balances between training the model 

effectively and avoiding overfitting, which occurs when the 

model memorizes the training data too well. 

3) Step 3 and 4: Data for Meta Model training  

The prediction outputs of the base models on the test data set 

are concatenated to form the new stacked input (step 3 in 

   Fig. 2) to the meta model. Then 

the meta-model is trained in isolation, to get its own final 

predictions of the anomalies. 

4) Step 5 and 6: Explanations with SHAP 
 Once, the final prediction is made by the meta model, the 

pipeline steps of the XAI-SHAP process as shown in Fig. 1 is 
triggered. The explanation is derived for the anomalous 
instances where the difference (error) between the input and 
the reconstructed value is high. The explanatory models 
provide explanation for why an instance was marked as 

anomaly by the predicting model. The method here is to 
compute the SHAP values of the reconstructed features and 
relate them to the true values of the input that is anomalous.  
The explanations on anomalies finalized by the model are 
reviewed by the domain expert across all the cases. 

IV. RESULTS AND DISCUSSIONS 

The overall results of base models and the meta-model in 
TABLE II. shows that the mae score of meta models is higher 
than the individual base models. 

TABLE II.  RESULTS FROM ALL MODELS 

Model 

Name 
AE VAE CAE LSTM-

AE 

LSTM-

VAE 

Meta-

Model 

MAE score 0.43 0.453 0.007 0.116 0.484 0.0064 

Now to apply the SHAP XAI to explain why an anomaly is 
flagged as anomalous by the final model. SHAP Plot of few 
indexes of the test data samples that is finally flagged as an 
anomaly is shown in   Fig. 3. Here, random 
indexes of 2 samples [index 16 & 10 in order of the image in 
  Fig. 3.] marked as anomalous by the model is taken 
for the SHAP interpretation. The features marked by the red 
in each of the plot cause an increase of the contribution to 
anomaly value while the features marked in blue causes a 
decrease. Taking the case of index 16 (middle image), an 
increase in supply temperature is the main cause of the 
anomaly, followed by available number of fans to cool the 
system. This justifies the fact that increase in supply 
temperature, requires more number of fans to be turned ON to 
achieve required cooling. And here, to turn them ON (done 
automatically by SCADA), sufficient fans may not be ready 
(among the groups of fans in the system) or unhealthy, the 
service engineer can check the status and take necessary 
actions accordingly. 

 
 

 

  Fig. 3: SHAP Interpretation for 3 anomalous indexes 

Now, taking the index 10, the anomaly is due to changes in 

the liquid flow values (that is kept almost stable during 



operation). This was identified to be due to disturbance in the 

flow sensor measurements. If this pattern repeated(in this 

dataset it was not), then the action would be to check the 

sensor for calibration or cleaning. It is seen in  

 Fig. 3 the features that assert positive impact push 

output value higher. 

Now, the validating the local accuracy for index 16, using 

“(3)” and “(4)” is as follows: 

f(x)=2.683, Ef(x)=-7.742, and 𝜙𝑖 = 2.683 − (−7.742) = 10.42 

 𝜙𝑖(𝑣𝑠) = 4.6 + 3.81 + 0.87 + 0.63 + 0.49 + 0.34 + 0.17 − 0.25
− 0.22 − 0 − 02 = 10.42 

Similarly for index 10, it is : 

f(x)=-5.857, Ef(x)=-7.742, and 𝜙𝑖 = 1.885 

 𝜙𝑖(𝑣𝑠) = 1.5 + 0.84 + 0.15 + 0.1 − 0.28 − 0.16 − 0.08 − 0.08
− 0.07 − 0.02 = 1.9 

     Alternative, among the visual plot representations of shap 

value, a custom function to return a dictionary with 

explanations for top N records that contribute highest to the 

anomaly identification is written to get numeric output as 

shown in Fig. 4. 

 

Fig. 4: Custom function showing highest contributor for anomaly 

Here, taking the one example of the explanation of a 
randomly picked index [141] marked as ‘1’ in red indicate that 
the anomaly is mainly due to 2 features that have “-1” as the 
contributing value. Here it is due to high values of 
conductivity, and this can trigger a check on the trend of 
conductivity increase and  trigger for a maintenance activity 
to replace resin bottle for ion-exchange process to normalize 
the cooling liquid conductivity to lower values. These are 
different ways you can validate the explainability. 

V. CONCLUSION 

Diagnosing faults or risk is the key goal of a predictive 
maintenance program. With the application of data-driven 
ML/DL methos in the complex industrial domain, this is 
challenging due to the non-linear processes. Instead of 
depending on a single model’s performance, the combined 
learning of multiple heterogenous models into a stacked 
ensemble ensures the diversity of learning the representation. 
A key importance of the effectiveness of the number and type 
of base models is addressed here. XAI tries to overcome the 
"black-box" apprehensions from the industrial actors who 
struggle with trusting AI decisions due to performance 
anxieties. It illuminates anomalies and provides explanations 
for their occurrence. This enhanced understanding can guide 
proactive maintenance interventions, minimizing downtime 
and maximizing equipment lifespan. The adaptation of model 
agnostic KernelSHAP XAI to explain the final anomalies 
detected. Such type of explanation either in form of visual 
plots or with numerical values explaining the feature 
contributions are beneficial to speed up service or 
maintenance activity predictively to diagnose abnormal 
scenarios rather than being reactive. Thus, bridging the gap 

between data-driven insights and human comprehension in the 
industrial application.  

The results show how the post-hoc SHAP XAI technique 
describes why it made certain decisions of the anomaly 
detected. The case study example shows how feature 
contributions define the anomaly index to  provoke a 
maintenance action or a further validation step (like in case of 
the sensor disturbance). As a result, the XAI explanation gave 
insights into the reasonings by making the whole system 
transparent. Then, the explanation produced is evaluated 
utilizing local accuracy metric. As the goal is to show the 
value of the XAI in the industrial domain to ensure Trust in 
the Deep learning models predictive performance among the 
stakeholders, there is no comparison study carried with other 
related algorithms. 

The diversity in ensemble deep learning is achieved by 
training different baseline deep learning architectures over 
several data samples. The diversity, however, is limited by the 
computation cost and the availability of suitable data to be 
sampled. The computational complexity of the ensemble 
approach is an additional essential aspect to consider among 
others like predictive performance accuracy. The 
computational cost is distributed on two complexity metrics: 
The computational cost of training and creating the ensemble 
model and the computational cost of predicting a new 
instance: The computational cost of the prediction is relatively 
small compared to the computation cost of the training 
ensemble. Thus, this metric should be addressed. 
Furthermore, smaller ensembles perform faster prediction and 
needs less memory to keep its components. 
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