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Abstract—Zero-shot domain adaptation (ZSDA) is a domain
adaptation problem in the situation that labeled samples for a
target task (task of interest) are only available from the source
domain at training time, but for a task different from the
task of interest (irrelevant task), labeled samples are available
from both source and target domains. In this situation, classical
domain adaptation techniques can only learn domain-invariant
features in the irrelevant task. However, due to the difference
in sample distribution between the two tasks, domain-invariant
features learned in the irrelevant task are biased and not
necessarily domain-invariant in the task of interest. To solve
this problem, this paper proposes a new ZSDA method to learn
domain-invariant features with low task bias. To this end, we
propose (1) data augmentation with dual-level mixups in both
task and domain to fill the absence of target task-of-interest
data, (2) an extension of domain adversarial learning to learn
domain-invariant features with less task bias, and (3) a new
dual-level contrastive learning method that enhances domain-
invariance and less task biasedness of features. Experimental
results show that our proposal achieves good performance on
several benchmarks.

Index Terms—Zero-shot domain adaptation, Mix-up, domain
adversarial training

I. INTRODUCTION

Machine learning models have achieved remarkable per-

formance in various recognition tasks in recent years. In the

application of machine learning to real-world problems, one

of the common obstacles is domain shift [1], which causes

poor generalization performance when there is a gap between

the distribution of training data (source domain) and that of

test data (target domain). Domain adaptation is an area of

research that aims to improve predictive performance in the

target domain even in the presence of domain shift and has

been studied widely under a variety of situations [2]–[4].

In this study, we pay attention to Zero-Shot Domain Adap-

tation (ZSDA) [5], where (1) we consider two domains: source

domain and target domain (e.g., gray-scale images and color

images), (2) we consider two different classification tasks, task

of interest (ToI, e.g., digit classification) and irrelevant task

(IrT, e.g., alphabet classification), (3) the goal is to solve the

task of interest in the target domain, but the learner cannot

obtain samples of ToI in the target domain for training, (4)
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Fig. 1: Zero-shot domain adaptation

instead, the learner can obtain samples of both tasks in the

source domain and samples of the irrelevant task in the target

domain (Figure 1).

ZSDA is useful when (1) domain shifts exist and (2) labeled

data on the task of interest are difficult to obtain or costly, but

data on an irrelevant task are readily available. For example,

consider the following situation in medical image diagnosis.

Suppose Hospital A and Hospital B have sets of medical

images, but the images of the two hospitals follow different

distributions due to the difference in the imaging equipment.

Hospital A possesses a set of medical images related to a

rare disease (the task of interest), while Hospital B does not.

On the other hand, Hospital A and Hospital B both have

many medical images related to a common disease (irrelevant

task) with many patients. When these samples can be shared

with each other, can we obtain a model that can accurately

diagnose the suspected rare disease with medical images taken

by Hospital B’s imaging equipment? ZSDA provides a solution

to problems in such a situation.

A. Related work

Domain adaptation techniques for addressing domain shifts

in various problem settings have been proposed, such as

unsupervised domain adaptation [2], partial domain adaptation

[6], and source-free domain adaptation [7]. ZSDA is a special

case for them. The difficulty inherent in ZSDA is that, in

addition to domain shift, the task we can obtain samples at

training time does not match the task we can obtain samples
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at test time. To solve ZSDA, we need to deal with not only

domain shifts but also the gap that arises between different

tasks.

Two main approaches to solving this problem have been

known: one is based on generative models, and the other

is based on feature disentanglement. The generative model

approach uses a generative model such as GAN (Generative

Adversarial Network) [8] with a domain transformation mod-

ule. Task of interest data in the target domain are synthesized

using the generative model from the task of interest data in

the source domain through the domain transformation module,

and then the training data are augmented with the synthesized

samples, which is expected to fill the absence of the ToI data

in the target domain. The limitations of this approach are two-

fold. First, it requires significant computational resources and

careful tuning of hyper-parameters to train a generative model

capable of performing domain transformations and producing

high-quality images. In addition, it is intrinsically difficult

to generate high-quality ToI images without using ToI data

in the target domain. If the obtained generative model is of

insufficient quality, the predictive performance of the models

trained with such synthetic samples would be significantly

degraded, too.

Another strategy for solving ZSDA is based on feature

disentanglement. Again, there are two main difficulties with

ZSDA: domain shift and the gap between the tasks. Domain

shift can be solved if one can obtain features invariant to

differences in domain with retaining information useful for

the classification task [2]. However, even if domain-invariant

features could be obtained for one task, they might not neces-

sarily be domain-invariant for another task. In other words,

domain invariance of the features needs to be maintained

across different tasks to deal with ZSDA. To solve the two

difficulties simultaneously, DF-ZSDA [9] proposes to force

the feature extractor to disentangle domain-related information

from task-related information. To this end, DF-ZSDA designed

an algorithm with two stages. The first stage utilized dual-

level adversarial learning to learn domain-invariant features

that are not affected by the difference between the two tasks.

As discussed in [9], the features learned at the first stage are

still biased by the difference in tasks. To deal with this bias,

DF-ZSDA introduces an attention module in the second stage

to mitigate the task difference bias left in the features.

Recently, [10] attempted to utilize large language models

(LLMs) to solve zero-shot domain problems. In their setting,

information about the target domain is not provided by irrel-

evant data from the target domain but by a piece of natural

language that can be used by LLMs. We will not compare

with this approach in our experiments due to differences in

settings resulting from whether or not LLMs are used and

how information from the target domain is provided.

B. Contribution

In this paper, we propose an algorithm, termed dual mixup

contrastive learning (DMCL), to solve the ZSDA problem.

DMCL aims to obtain domain-invariant features that can

work on ToI. As we already discussed, learning domain-

invariant features which are less affected by task differences

is necessary to solve the ZSDA problem. With this in mind,

the contributions of this paper are summarized as follows.

1) We propose to use a dual mixup, which generates

samples by randomly interpolating two domains and two

tasks. Dual mixup allows to generate various samples

belonging to intermediate tasks and domains without the

training of generative models.

2) We propose an extension of domain adversarial training

to obtain domain-invariant features that can generalize

over ToI by further forcing the model to distinguish the

dual mixup samples.

3) Samples generated with dual mixup have intermediate

class labels and domain labels that interpolate the two

tasks and domains. To exploit the diversity of dual mixup

samples to enhance domain invariance and reduce task

biasedness of the features, we introduce a novel dual-

level contrastive learning method that contrasts pairs of

samples at two levels: task and domain.

4) We experimentally demonstrate that our proposal

achieves good performance among several competitors

with several datasets. Also, additional experiments verify

our proposal is able to learn domain-invariant features

for ToI data.

II. PRELIMINARY

A. Problem setting

In the zero-shot domain adaptations (ZSDA) setting, we

differentiate data in two ways, domains and tasks. First, let

X be the input space and Y be the label space. A domain

is defined as a joint distribution PXY on X × Y 1. In the

zero-shot domain adaptation (ZSDA) task, data come from

two domains, a source domain Ps, and a target domain Pt.

Second, in the ZSDA setting, data are also drawn from two

tasks, a task of interest (ToI), and an irrelevant task (IrT).

ZSDA setting assumes that different classification tasks are

distinguished by distinct label sets. That is, ToI and IrT have

distinct label sets Cr and Cir, where Cr ∩ Cir = ∅.
For the ToI, we only have sample-label pairs from the source

domain, namely we have Dr
s =

{(
xr
sj , y

r
sj

)}N

j=1
where yrs ∈

Cr. For the IRT, we have sample-label pairs from both source

and target domains, namely we haveDir
s =

{(
xir
sj , y

ir
sj

)}N

j=1

where yirs ∈ Cir andDir
t =

{(
xir
tj , y

ir
tj

)}N

j=1
where yirt ∈ Cir,

respectively. We also use a domain label to indicate the domain

information of a sample. For xr
s and xir

s , the corresponding

domain label ds is 0; for xir
t the corresponding domain label

dt is 1. Given Dir
s , Dir

t , Dr
s , the goal of the ZSDA task is to

learn a model that can generalize to the distribution of target

ToI data. We denote samples drawn from the distribution of

target ToI data by Dr
t =

{(
xr
tj , y

r
tj

)}N

j=1
.

1We often use P to refer to PXY for simplicity
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B. Domain adversarial training

Domain-invariant features refer to features that are invariant

in both source and target domains. Learning domain-invariant

features is a classical way to alleviate domain shifts. In this

work, we extend Domain adversarial training (DAT) [2] to

learn domain-invariant features. Hence, we first introduce

DAT.

Let X and Y be the input space and label. Ds is a dataset

from the source domain, and Dt is a dataset from the target

domain. Let G : X �→ R
m be the feature extractor, and

C : Rm �→ Y be the category classifiers. Domain adversarial

training introduces an additional domain classifier D : Rm �→
[0, 1] for distinguishing domain information of input samples

where samples from the source domain with domain label 0,

and samples from the target domain with domain label 1. The

domain adversarial training can be formulated as follows:

min
G,C

max
D

Lc(G,C) + λLd(G,D)

where Lc(G,C) = E(xs,ys)∼Ds
� (C (G (xs)) , ys) ,

Ld(G,D) = Exs∼Ds
log (1−D (G (xs)))+

Ext∼Dt
logD (G (xt)) .

Here, � is the cross-entropy loss and λ is a trade-off hyper-

parameter. G and C are both trained to predict category

label correctly, hence G is expected to provide discriminative

features. Ld is used to train a domain classifier. D is trained

to predict domain labels of input samples correctly, while G
is trained to provide features that could make D misclassify.

With this procedure, the features obtained with G are expected

to be domain-invariant. Lc is a classification loss for the label

classifier.

C. Mixup

Mixup is a data augmentation technique that generates

virtual sample-label pairs by a convex combination of two

sample-label pairs. In this paper, we utilize mixup to generate

virtual samples to act as target ToI data. Category-level mixup

[11] performs data augmentation by randomly interpolating a

pair of samples with distinct labels. It can be formulated as

follows:

x̃ = Mλ (xi,xj) = λxi + (1− λ)xj ,

ỹ = Mλ (yi, yj) = λyi + (1− λ)yj

where λ ∼ Beta(α, α) for α ∈ (0,∞). Recently, both

empirical [11] and theoretical [12] results show that category-

level mixup can improve the model’s generalization ability.

Inspired by [11], [13] proposed the domain-level mixup to

improve the discriminative ability of the domain classifier.

Domain-level mixup applies a convex combination on samples

from different domains and their domain label.

x̃ = Mλ (xi,xj) = λxi + (1− λ)xj ,

d̃ = Mλ (di, dj) = λdi + (1− λ)dj

where λ ∼ Beta(α, α), for α ∈ (0,∞).

III. METHODOLOGY

A. Overview

In this section, we propose a learning algorithm, termed dual
mixup contrastive learning (DMCL), for the zero-shot domain

adaptation. As discussed in section I, to solve the ZSDA task,

DMCL aims to learn domain-invariant features that generalize

over ToI task. An overview of our proposal is shown in Figure

2.

First, we extend mixup to synthesize intermediate samples

between domains and tasks to fill the absence of target ToI

data. Then, we extend domain adversarial training with inter-

mediate samples to learn domain-invariant features. As shown

in Figure 2, our model structure is an extension of domain

adversarial neural network with a domain classifier D ◦ GD,

and two task classifiers, Fr ◦ GF for ToI, Fir ◦ GF for IrT.

With adversarial learning (red arrow in Figure 2), the feature

extractor G is expected to extract domain-invariant features

with maintaining discriminative capability in both ToI and IrT.

Here, the domain invariance of the features is induced by the

gradient reversal layer (GRL) which reverses the gradient by

multiplying a negative value during the backpropagation. Also,

the discriminative capability of the features is due to training

by cross-entropy loss (green arrow in Figure 2).

As we demonstrate with ablation studies later, domain-

invariant features learned by domain adversarial training are

insufficient to generalize to ToI. Since we can only have

IrT data from both domains, the resulting features are biased

toward the IrT task. To deal with this task bias, we design dual-

level contrastive learning objectives (pink arrow in Figure 2).

With the first contrastive learning objective, GF is encouraged

to be more sensitive to differences in tasks and class labels

while caring less about differences in domains. This further

enhances the domain invariance of the features input to Fr

and Fir. Similarly, with the second contrastive learning objec-

tive, GD focuses on domain-related information more while

ignoring task-related information. Hence, the performance of

the domain classifier will be further improved.

Moreover, since GD only learns domain-related features,

when G is adversarially trained with gradient information

from GD, only domain-related features are eliminated, and

the task-related features which are helpful in classification

tasks are unaffected. On the other hand, with adversarial

training, G tends to learn domain-invariant features, i.e., the

input of GF becomes domain-invariant. This leads to a better

domain invariance of outputs of GF . Therefore, by training

features with the contrastive learning objective and the domain

adversarial training objective alternately, domain-invariance

and task-unbiasedness can enhance each other.

B. Dual Mixup for intermediate samples

In this work, we provide intermediate data from different

domains and tasks to act as target ToI data with low compu-

tation costs. This strategy has third merits. First, these inter-

mediate data contain information from both source and target

domains, also from both ToI and IrT. A model trained on these
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Fig. 2: An illustration of our proposal DMCL. Here GRL refers to a gradient reversal layer. The red arrow indicates the

adversarial learning procedure, the green arrow indicates a standard training procedure, and the pink arrow indicates the

contrastive learning objectives.

data should be able to learn features that work on different

domains and tasks. Second, we can generate intermediate data

without using target ToI data since intermediate data between

source ToI data and target IrT already contain information

from two domains and tasks. Third, we synthesize intermediate

samples by mixup. Mixup only requires applying a convex

combination on different samples; hence this method requires

low computation resources.

To synthesize intermediate data between both tasks and

domains, we extend the mixup [11] technique. Formally, for

xi in Dr
s and xj in Dir = Dir

s ∪Dir
t , we synthesize virtual

data by x̃ = Mλ (xi, xj).
Then, unlike single-level mixup, we mix both the category

label and the domain label for x̃ by:

ỹ = Mλ (yi, yj) , d̃ = Mλ (di, dj)

where λ ∼ Beta(α, α), for α ∈ (0,∞).

C. Domain adversarial training with dual mixup

Using data augmentation with intermediate data synthesized

by dual mixup, we extend the domain adversarial training

method for learning domain-invariant features. During this

procedure, we force the domain classifier and label classifier to

distinguish samples generated by mixing samples in different

domains and tasks with random proportions. Through this

training, the feature extractor is trained to be able to handle

data from different domains and tasks.

Specifically, we define Cd = D ◦ GD ◦ G, which means

Cd(x) = D(GD(G(x))). Similarly, we define Cr = Fr ◦
GF ◦G and Cir = Fir ◦GF ◦G. Then, the domain adversarial

training with dual mixup samples is shown in the following:

min
G,GF
Fr,Fir

max
GD,D

Ladv = Ld(Cd) + Lmd(Cd)+

Lf (Cr, Cir) + Lmf (Cr, Cir). (1)

where

Ld(Cd) = Exs∼Ds
log (1− Cd(xs)) + Ext∼Dir

t
logCd(xt),

Lmd(Cd) = E xi∼Ds

xj∼Dir
t

λ∼Beta(α,α)

λ log(1− Cd(x̃)) + (1− λ) logCd(x̃).

Lf (Cr, Cir) = E(x,y)∼Dr
s
�(Cr(x), y) + E(x,y)∼Dir�(Cir(x), y)

Lmf (Cr, Cir) = E λ∼Beta(α,α)

xi∼Dr
s ,xj∼Dir

λ�(Cr(x̃), yi)+

(1− λ)�(Cir(x̃), yir).

Here, Ds = Dir
s ∪Dr

s , D
ir = Dir

s ∪Dir
t , x̃ = Mλ (xi, xj), �

is the cross-entropy loss, and α is hyper-parameter.

In the above training objective, Ld and Lmd force G
to learn domain-invariant features and force D and GD to

give high domain classification accuracy. Lf and Lmf are

the classification error of ToI, IrT data, and of their mixup,

respectively; this forces Cr and Cir become to be able to

classify ToI and IrT data, respectively.

D. Dual contrastive learning for disentanglement

We then design two contrastive learning objectives to en-

hance domain invariance and reduce task biasedness in the

features. We assume that the features extracted from an image

can be divided into two types: domain-related features and

task-related features. We expect the domain-related features to

contain information that allows identifying the domain while it

is insensitive to changes in the task and category. In contrast,

we expect the task-related features to contain information that

allows identifying category labels while it is insensitive to

changes in the domain. As discussed in section I, disentangling

task-related features from domain-related features helps the

model in classifying target ToI data.
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We introduce two feature extractors, GF and GD, to realize

the feature disentanglement. GF is used to extract task-related

features, GD is used to extract domain-related features. To

enforce feature disentanglement, our key intuition is that

when two samples from different domains but with the same

category are fed into GF , their corresponding outputs should

be very similar since these two samples are only different at

the domain level. Likewise, when two samples from different

categories but with the same domain are fed into GD, their

corresponding outputs should be the same.

Considering that we have no way of knowing how domain-

related and task-related features are mixed together in target

ToI data, we need our model to be able to have the generalized

feature disentangled capability. This means our model should

be able to achieve feature disentanglement for data containing

different mixes of domain-related and task-related features.

On the other hand, by varying λ, mixup is able to generate

intermediate data containing different proportions of domain

information and task information. Hence, we utilize interme-

diate data to realize our intuition for obtaining generalized

feature disentangled ability. Figure 3 explains a high-level

concept of the proposed mixup procedure.

Formally, let us consider three mini-batches of K samples

Xr
s , X

ir
s , Xir

t fromDr
s ,D

ir
s ,Dir

t , We first apply mixup on any

pair of min-batches of samples from the three mini-batches

with the same λ for obtaining intermediate samples.

A =
{Mλ

(
Xri

s ,Xiri
s

)}K

i=1
,B =

{Mλ

(
Xri

s ,Xiri
t

)}K

i=1

C =
{Mλ

(
Xiri

s ,Xiri
t

)}K

i=1

Then, we get three mini-batches of mixup samples A,B,C.

We assume that after applying mixup, the corresponding

category information and the domain information will also be

mixed in equal proportions. Then, Ai and Bi contain the same

category information but different domain information, and

Bi and Ci contain the same domain information but different

category information.

Considering that the core idea of our intuition is similar to

the goal of contrastive learning, our intuition can be naturally

realized by contrastive learning. We take GD as an example to

explain our detailed approach. For GD, our key idea suggests

that GD(G(Bi)) and GD(G(Ci)) should become as similar

as possible, which means (Bi,Ci) should be treated as a

positive pair in contrastive learning; we treat the other 2(K−1)
augmented samples within a minibatch and Bi as 2(K − 1)
negative pairs, like did in [14].

Then, given positive and negative pairs, we utilize the

normalized temperature-scaled cross entropy (NT-Xent) loss

Lcond
to train GD:

Lcond
(GD) = − log

exp
(
sim

(
zdi

B, zd
i
C

)
/τ

)
∑K

j=1,j �=i
T∈{B,C}

exp
(
sim

(
zdi

B, zd
j
T

)
/τ

)
(2)

Fig. 3: An illustration of dual contrastive learning, here the

dashed line indicates apply mixup on two samples.

where, sim(u,v) = u�v/‖u‖‖v‖ denote the dot product

between l2 normalized u and v. zdi
B = GD(G(Bi)), zd

i
C =

GD(G(Ci)), τ is the temperature parameter.

Likewise, GF treats (Ai,Bi) as positive pair. GF is trained

by NT-Xent loss Lconf
:

Lconf
(GF ) = − log

exp
(
sim

(
zf iA, zf iB

)
/τ

)
∑K

j=1,j �=i
T∈{A,B}

exp
(
sim

(
zf iA, zf jT

)
/τ

)
(3)

where, zf iA = GF (G(Ai)), zf
i
B = GF (G(Bi)).

The entire training procedure is performed as follows. We

first optimize equation (1), then optimize equation (2) and (3)

with shared intermediate samples. We repeat the above two

steps alternately.

IV. EXPERIMENTS

A. Experimental results on two benchmarks

Datasets We evaluate our proposal on two benchmarks.

The first is X-NIST, which consists of four domains and

four classification tasks. X-NIST is based on four datasets,

including MNIST (task M) [15], Fashion-MNIST (task F)

[16], EMNIST (task E) [17], NIST (task N) [18]. Images in

these datasets are all in the gray-scale domain (domain G). To

test the domain adaptation performance, we create the color

(domain C), edge (domain E), and negative domains (domain

N). The color domain is synthesized by using [2]’s method,

blending the samples with randomly selected patches from

the BSDS500 dataset [19]. The edge domain is created by

applying the canny edge detector, and the negative domain

is obtained by subtracting the original pixel value from 255.

When conducting experiments, we choose two of the four

tasks as ToI and IrT, but we do not consider the NIST

and EMNIST combinations since their label spaces are not

completely different.

The second benchmark is Office-Home datasets [20]. It con-

sists of images from four different domains: Artistic images

(Ar), Clip images (Cl), Product images (Pr), and Real-world
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images (Rw). This dataset contains images from 65 object

categories for each domain. When conducting experiments,

we used 10 random categories from 65 categories as ToI and

the rest as the IrT.

Implementation deatails In all experiments, the classifier

Fr, Fir, and D were implemented with one fully connected

layer. In the X-NIST benchmark, two feature extractors, GD

and GF , were implemented with three convolutional layers. G
was implemented with three convolutional layers. We set the

batch size as 64 and the total number of iterations as 7,000.

In the Office-Home dataset, we utilized ResNet-50 [21] pre-

trained on ImageNet. G was implemented with stages 0 to 3 of

ResNet-50. Stage 4 of ResNet-50 was copied into two parts:

GD and GF . We set the batch size as 32 and the total number

of iterations as 15,000. For all tasks, we used Adam with a

learning rate of 0.0002. In half of the full training iterations,

the learning rate was decayed by 0.1. More details are shown

in the supplementary.

Comparison methods We compare our proposal with two

types of works: (1) the generative model-based methods,

ZDDA [5], CoCoGAN [22], and Wang2020 [23]. (2) Feature

disentanglement-based method, DF-ZSDA [9] 2. For all com-

petitors, the model was trained on source ToI, source IrT, and

target IrT. Then the model was tested on the target ToI data.

Results Table I shows the prediction accuracy of the

target ToI data for over 10 task combinations on the X-

NIST. Overall, these results show that our proposal exhibits

a good domain adaptation ability in the ZSDA setting; our

proposal achieves the best average accuracy on X-NIST. In

particular, our proposal achieves the best performance when

domain shifts happen between the gray-scale domain and the

negative domain (the third and fifth columns in Table I).

This is because our proposal relies on the mixup technique,

which assumes that intermediate domains can be obtained

by linear interpolating source and target domains. Gray-scale

and negative domains satisfy this assumption very well, so

our proposal performs particularly well. When domain shifts

are C → G, our proposal achieves the second-best result,

only worse than DF-ZSDA. When domain shifts are G → C
and G → E (the first and second columns in Table I), the

performance gap between our proposal and the best method,

Wang2020, is within four percent. This gap is acceptable

when considering that our proposal does not require heavy

computation resources to train a generative model.

Table II shows the prediction accuracy of the target ToI

data on the office-home. Although the domain shift in this

benchmark is more complex than X-NIST, our proposal still

shows good performance to overcome domain shift. Compared

with generative model-based methods, our proposal achieves

competitive or better results with fewer training resources.

Compared with DF-ZSDA, our method achieves close results

2We used the official code provided by the author of DF-ZSDA to reproduce
DF-ZSDA’s experimental results on X-NIST. The reproduced results are worse
than the results reported in their paper. The experimental results on office-
home datasets are drawn from their paper because the provided code is not
prepared for office-home.

(a) Illustration of domain-
invariance

(b) Illustration of contrast-
ing task

(c) Illustration of domain-
invariance

(d) Illustration of contrast-
ing task

Fig. 4: Visualization results when domain shift is domain G

to domain N. At the top, the ToI is MNIST, IrT is Fashion-

MNIST. At the bottom, the ToI is MNIST, IrT is EMNIST.

in certain situations. However, when the source domain is

Rw and the target domains are Cl or Pr (the sixth and

seventh columns in Table II), there is a clear gap between our

approach and DF-ZSDA. We suspect that the reason for not

performing well is that the gap between domains is complex.

This complexity weakens the effect of the mixup and therefore

affects the performance of our proposal.

B. Visualizations

In this work, we are ultimately concerned with the features

used to classify ToI data, which are outputs of GF . We expect

GF can learn domain-invariant features and is able to separate

features belonging to different tasks. To verify whether our

proposal works as expected, we visualize the feature space of

GF on X-NIST. More specifically, we randomly select 200

samples from source IrT, source ToI, target IrT, and target ToI

datasets, respectively. Then, we utilize t-SNE [24] to visualize

features extracted by GF on a two-dimensional space. In

Figure 4, we use two ways to colorize feature points. First, we

colorize points by their domain label. The feature distributions

of source and target domains are very similar. This indicates

GF can extract domain-invariant features. Then, we colorized

points by their task. We can find that the features of ToI

and IrT can be separated, which indicates our contrastive

learning objective works well. With the above observation, we

concluded that our proposal works as expected. Visualizations

on more datasets are shown in the supplementary due to space

limits.
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TABLE I: Experimental result on X-NIST with classification accuracy (%) averaged over 10 runs

Domains Methods
ToI MNIST(DM ) FashionMNIST(DF ) NIST(DN ) EMNIST(DE )

Average

IrT DF DN DE DM DN DE DM DF DM DF

G→ C

ZDDA 73.2 92.0 94.8 51.6 43.9 65.3 34.3 21.9 71.2 47.0 59.5
CoCoGAN 78.1 92.4 95.6 56.8 56.7 66.8 41.0 44.9 75.0 54.8 66.2
Wang2020 81.2 93.3 95.0 57.4 58.7 62.0 44.6 45.5 72.4 58.9 66.9
DF-ZSDA 68.7 77.0 86.3 40.2 42.3 42.4 45.7 31.3 83.0 66.8 58.4
Ours 76.6 89.2 80.9 45.3 59.5 57.0 50.2 59.2 78.1 60.9 65.7

G→ E

ZDDA 72.5 91.5 93.2 54.1 54.0 65.8 42.3 28.4 73.6 50.7 62.6
CoCoGAN 79.6 94.9 95.4 61.5 57.5 71.0 48.0 36.3 77.9 58.6 68.1
Wang2020 81.4 93.5 96.3 63.2 58.7 72.4 49.9 38.6 78.2 61.1 69.3
DF-ZSDA 79.5 95.5 93.5 33.4 30.7 35.8 53.4 47.0 85.5 74.4 62.9
Ours 87.0 91.5 93.1 59.9 63.8 64.7 48.3 44.2 78.5 71.5 70.3

G→ N

ZDDA 77.9 82.4 90.5 61.4 47.4 62.7 37.8 38.7 76.2 53.4 62.8
CoCoGAN 80.3 87.5 93.1 66.0 52.2 69.3 45.7 53.8 81.1 56.5 68.6
Wang2020 - - - - - - - - - - -
DF-ZSDA 59.7 81.0 90.6 68.7 64.3 77.6 58.7 59.0 77.7 64.0 70.1
Ours 94.6 94.2 97.6 69.8 68.7 78.9 62.7 64.9 86.2 86.4 80.4

C → G

ZDDA 67.4 85.7 87.6 55.1 49.2 59.5 39.6 23.7 75.5 52.0 59.5
CoCoGAN 73.2 89.6 94.7 61.1 50.7 70.2 47.5 57.7 80.2 67.4 69.2
Wang2020 73.7 91.0 93.4 62.4 53.5 71.5 50.6 58.1 83.5 70.9 70.9
DF-ZSDA 98.1 99.1 99.1 88.0 89.1 89.5 69.0 69.1 91.3 92.1 88.4
Ours 92.1 90.3 92.8 86.2 76.2 74.9 65.9 62.8 89.4 75.9 80.7

N→ G

ZDDA 78.5 90.7 87.6 56.6 57.1 67.1 34.1 39.5 67.7 45.5 62.4
CoCoGAN 80.1 92.8 93.6 63.4 61.0 72.8 47.0 43.9 78.8 58.4 69.2
Wang2020 82.6 94.6 95.8 67.0 68.2 77.9 51.1 44.2 79.7 62.2 72.3
DF-ZSDA 64.1 68.7 89.5 58.7 57.2 30.3 58.4 51.0 73.4 56.6 60.8
Ours 95.8 92.4 97.9 75.0 73.9 78.1 64.6 57.2 88.3 87.5 81.1

TABLE II: Experimental result on Office-Home with classification accuracy (%) averaged over 10 runs

Source Pr Rw Ar Cl

Target Ar Cl Rw Ar Cl Pr Cl Pr Rw Ar Pr Rw
CoCoGAN 57.6 53.4 71.7 69.2 51.3 65.8 62.3 69.5 74.5 66.7 74.0 66.4
Wang2020 70.3 60.8 74.8 72.2 61.4 72.2 62.7 71.9 76.3 72.6 75.1 73.9
DF-ZSDA 64.4 69.2 82.0 77.9 76.2 88.5 71.0 76.5 85.1 62.1 68.7 75.1
Ours 67.5 65.1 78.9 74.3 69.0 75.8 72.1 76.7 83.8 69.8 73.0 71.5

TABLE III: Ablation studies on X-NIST with classification

accuracy (%) averaged over 10 runs

Domain shift G→ C G→ E G→ N C→ G N→ G
w/o dual mixup 59.9 63.1 65.2 74.2 76.0
w/o dual contrastive 56.4 66.2 48.4 75.0 61.5
Ours 65.7 70.3 80.4 80.7 81.1

C. Ablation studies

To check the importance of each module in DMCL, we

perform the following ablation studies on the X-NIST.

Importance of the dual mixup We extend domain ad-

versarial training with mixup samples. To verify this module

is necessary, we remove the mixup samples used in domain

adversarial training. The second row in Table III shows the

averaged classification accuracy over 10 task combinations

of the target ToI data when we remove dual mixup module.

Overall, these results show that the dual mixup module is

important. When this module is removed, the difference in

performance can be up to 17%.

Importance of the dual-level contrastive learning We

utilize dual-level contrastive learning to force feature disen-

tanglement between domain-related features and task-related

features. To verify this module is necessary, we remove

two contrastive learning objectives. The third row in Table

III shows that dual-level contrastive learning is important,

and only domain adversarial training is not enough to solve

ZSDA. For all domain shifts, removing contrastive learning

objectives leads to worse accuracy on the target domain. This

fits our expectation. Exploring the intrinsic relationships with

contrastive objectives is helpful in solving ZSDA tasks. More

ablation studies are shown in the supplementary.

V. CONCLUSION

In this paper, we propose DMCL to learn domain-invariant

features that are not affected by the difference between tasks.

Specifically, we design a dual mixup to synthesize intermediate

samples between tasks and domains. These data bridge the gap

of target ToI data. Then we design two contrastive learning

objectives to explore the relationship among data from two

aspects: domain and task. With contrastive learning, our model

is able to separate domain-related features and task-related

features. Finally, by applying adversarial learning, the resulting

domain-invariant features are not affected by differences in
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tasks. In the evaluation, DMCL shows good performance

in solving zero-shot domain adaptation problems. Moreover,

we visualize our proposal on feature space and confirm our

proposal works as expected.
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