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Abstract—The field of space mission has been growing rapidly
in recent years, with a multitude of projects and initiatives
being undertaken by various organizations around the world.
One critical aspect of such endeavors is the ability to simulate
and visualize the complex environments and scenarios that space
missions may encounter. This paper presents the challenges of
human pose estimation in microgravity environments. Existent
frameworks face challenges in estimating human poses in non-
ordinary positions, and these difficulties are further compounded
by the shortage of pertinent data. To overcome these challenges,
we propose a synthetic dataset featuring virtual humans in mi-
crogravity, serving as a cost-effective alternative for training pose
estimation models. Our methodology employs transfer learning
with an HRNET backbone and associative embedding, facilitating
the retraining of models for 2D human pose estimation on
established datasets like COCO and MMPose. Evaluation against
publicly available images of astronauts in the International Space
Station (ISS) demonstrates our model’s robust generalization,
with the best result showing a 20% improvement compared to
models trained with COCO dataset. This research demonstrates
the viability of synthetic datasets for training models in unique
environments. The proposed methodology showcases improved
model performance in microgravity scenarios, marking a stride
in advancing human pose estimation for space exploration.

Index Terms—synthetic dataset, virtual dataset, pose estima-
tion, transfer learning

I. INTRODUCTION

With upcoming human space missions such as the Lunar

Gateway and Artemis missions where crew members will be

long-term exposed to a microgravity environment, it becomes

crucial to increase our understanding of the impact of this

environment on the crew members [1], [2].

One possible way to understand human behavior in space

is by analyzing their postures, actions, and movements. In

this scenario, human pose estimation is a potential tool to

support individuals in space by improving crew procedures

and enhancing training for future astronauts.

However, one of the primary challenges in estimating hu-

man pose in space is that most state-of-the-art frameworks are

not trained to understand humans in non-ordinary poses, such

as scenes where people are in different orientations [3].

Training new models for such an environment also poses

a challenge. Firstly, there is a limited amount of videos and

images publicly available to create annotations for the human

body. Additionally, it depends on specific space missions to

create the dataset, and astronauts would need to wear sensors

to collect the ground truth. Therefore, creating such a dataset

is an expensive endeavor.

In this context, this paper proposes a synthetic dataset that

creates virtual humans moving in a microgravity environment.

The proposed dataset serves as a foundation for transfer

learning, enabling the retraining of a model for 2D human pose

estimation on the COCO dataset and MMPose. The chosen

methodology employs an HRNET backbone and associative

embedding in a bottom-up approach.

The outcomes yielded by the retrained model are pitted

against publicly available imagery of astronauts in the ISS,

offering a robust basis for assessing the model’s generalization

and performance in a real-world space environment.

The main contributions of the paper are:

• a synthetic dataset of virtual body movement in micro-

gravity environment.

• transfer learning approach to use synthetic data generated

by virtual dataset to estimate human poses.

• comparison with public available video footage of astro-

nauts inside the ISS.

• refined model for pose estimation in space environment.

II. RELATED WORKS

A. 2D Pose Estimation

The field of 2D pose estimation from RGB cameras has

seen extensive researched, with several notable contributions

[4]. A deep learning-based approach for 2D pose estimation

has emerged as a powerful technique in recent years. Deep

learning models, particularly convolutional neural networks

(CNNs), have demonstrated remarkable capabilities in under-

standing complex visual patterns and extracting meaningful

features from images or videos.

These models can be trained on large-scale datasets of

annotated human poses, allowing them to learn the intricate

relationships between body joints and their corresponding

visual representations.

Two different approaches can be done in order to estimate

human pose, single or multi person pose estimation. While

single person pose estimation detects a specific person’s pose

in an image and when an image contains multiple people, then
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it is cropped until leave only one person [5]. Multi person pose

estimation allows the simultaneous detection and tracking of

multiple individuals in an image or video sequence. This is

particularly beneficial in crowded scenes or scenarios where

there are multiple people interacting or performing activities

together [4]–[6].

Two different approaches can be done to obtain multi person

pose estimation: top-down or bottom-up.

The top-down approach involves detecting and segmenting

individuals in the image using object detection techniques such

as Faster R-CNN or Mask R-CNN [7]–[10]. Then, for each

detected person, a pose estimator is applied individually to

predict the joint locations [11], [12].

the bottom-up approach aims to identify all the joints

present in the image and then group them into complete poses.

In this method, keypoint detection techniques are used, such

as algorithms based on part affinity fields or graphical models.

Joints are independently detected and then associated to form

complete poses [13]–[16]. The bottom-up approach is more

suitable for scenes with multiple people and occlusion as it

deals with joint detection and grouping in a joint step [6],

[12].

B. Datasets for deep learning-based approaches

Datasets are crucial for human pose estimation using deep

learning-based approaches. They provide annotated ground

truth data for training and evaluating models. These datasets

contain images or videos with corresponding annotations that

indicate the locations of human joints.

One of the most used datasets for human pose estimation

is COCO (Common Objects in Context) [17]. This dataset

includes a large collection of images with diverse scenes

and multiple people. COCO provides detailed annotations

for keypoint locations of 17 body joints, making it suitable

for both single-person and multi-person pose estimation. The

dataset’s size and diversity enable the development of robust

and generalizable pose estimation models.

One significant difficulty lies in obtaining a dataset that truly

captures the diversity and complexity of human experiences.

Ensuring that the dataset encompasses a wide range of de-

mographics, including race, gender, age, and socio-economic

backgrounds, requires careful consideration and meticulous

effort [18], [19]. Privacy concerns and ethical considerations

further complicate the process, as obtaining informed consent

and protecting individuals’ identities becomes paramount [20],

[21].

Annotating and labeling the data accurately is another hur-

dle, as it often necessitates the involvement of human experts

who possess domain knowledge and expertise. This process

can be both labor-intensive and time-consuming, particularly

when dealing with subjective or nuanced information that

requires careful evaluation and categorization [22], [23].

Synthetic datasets offer complete control over data genera-

tion, allowing researchers to manipulate various factors such

as lighting conditions, camera viewpoints, and background

settings. This control enables the creation of highly diverse

and challenging training scenarios that can improve the gen-

eralization capability of pose estimation models [24], [25].

While synthetic datasets featuring whole human bodies may

not yet achieve photorealism, they have become increasingly

valuable in supporting tasks such as action recognition, pose

estimation, and human tracking [26].

Among synthtetics datasets for human pose estimation,

SURREAL dataset [27] was one of the precursors. In this

paper authors encompass over 6 million frames and includes

accurate posture information, depth maps, and segmentation

masks. The groundbreaking research conducted in this study

has paved the way for numerous advancements in human

analysis, leveraging cost-effective and large-scale synthetic

data.

More recent developments highlight the potential of syn-

thetic data as an alternative to real-world data [28], [29]. In

PEOPLESANSPEOPLE [28], the authors introduced a human-

centric synthetic data generator which offers simulation-ready

3D human assets, parameterized lighting and camera systems,

and various labels such as bounding boxes, instance and se-

mantic segmentation, and COCO pose labels. The researchers

conducted benchmark experiments using the dataset and a

Detectron2 Keypoint R-CNN variant. They discovered that

pre-training a network with synthetic data and fine-tuning

it with real-world data led to significant improvements in

keypoint average precision, surpassing models trained solely

with real data or pre-trained on ImageNet.

III. MICROGRAVITY DATASET

A. Virtual astronauts

Firstly, ten different humanoid avatars were created using

Ready Player Me1. These avatars represent five men and five

women with diverse skin colors, facial characteristics, and

hairstyles. The objective behind this selection was to address

one of the challenges identified by [19] and ensure a more

inclusive representation across different demographics.

To accurately capture the essence of astronauts aboard the

ISS, we dressed our avatars in either a blue or white polo

shirt, khaki pants, and white sneakers. These clothing choices

closely resemble the uniforms worn by ISS personnel. Figure 1

shows the created avatars.

While there are numerous tools available for recreating

animations based on videos or using pre-defined animation

tools, we encountered difficulties finding existing movements

suitable for microgravity scenarios.

The unique posture that astronauts have in microgravity,

coupled with the lack of videos without occlusion and with a

fixed camera in high resolution, made it challenging to create

or obtain suitable movements based on videos. Therefore,

we create basic movements simulating astronauts. Initially,

all avatars were imported into Mixamo2 to standardize their

T-pose. Subsequently, we employed the Mixamo add-on for

1https://readyplayer.me/, last accessed 19.06.2023
2https://www.mixamo.com, last accessed 19.06.2023
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Fig. 1: Ten different avatars (five males and five females) with

a casual look like astronauts on the ISS.

Blender to generate body movements such as raising arms

and legs, as well as rotating the torso.

In order to create and execute our scenes, we leveraged the

capabilities of Unity. Each avatar in Unity was equipped with

a humanoid animator, enabling us to introduce randomized

movements.

We divided our animator into four layers: the base layer,

legs layer, and right and left arm layers and organized the

animations into Blend Trees, where values between 0 and

1 represented the movement magnitude of the body parts.

The target magnitude is randomly generated when a collision

between the avatar and the environment is detected. The

increase and decrease of the value is gradually changed each

frame until achieve the assigned value. Furthermore, when the

avatar is not in a collision state, we have defined its default

pose as having arms closed and legs flexed, similar to the

standard neutral body posture in microgravity [30].

To enable collision detection with the environment and

predefined targets, we assigned meshes to all avatars. For

the avatar’s body, we used capsule meshes created with Easy

Collider Editor 3 to simplify the simulation process.

When a collision is detected, we analyze which body part

collided and the orientation of the avatar’s body. Using this

information, we trigger one of the animator’s layers and apply

an impulse force in the direction of the subsequent target.

This allows us to simulate realistic reactions to collisions and

facilitate the avatar’s movement.

B. Scene background, lighting and cameras

The chosen scene background consists of the interior of the

ISS laboratory, as illustrated in Figure 2. The background was

created using a 3D model available on NASA’s website 4.

Multiple target zones were implemented in the scene to

enhance the experimental setup. When the avatars reached one

of these zones, they received a force impulse for translation or

rotation, guiding them towards the next target. These targets

were evenly spaced, effectively dividing the environment into

3https://assetstore.unity.com/packages/tools/level-design/
easy-collider-editor-67880, last accessed 01.08.2024

4https://nasa3d.arc.nasa.gov/detail/iss-internal, last accessed 19.06.2023

Fig. 2: ISS interior module scene background with an avatar.

seven segments. The primary objective of this segmentation

was twofold: to increase the variety of poses performed by

the avatars and to allow them sufficient time to return to their

neutral pose.

Four cameras were incorporated to capture the avatars’

poses. These cameras were equipped with a 15mm focal length

and configured with a 65mm ALEXA sensor type. We set

their clipping planes to 0.3 for the near plane and 100 for the

far plane. The selection of the camera model occured due to

its similarity to the internal cameras found on the ISS [31].

Additionally, it required no additional plugins to recreate it

within the Unity environment.

C. Data generations

We conducted our simulation with a capture rate of 30fps.

Over the course of the experiment, we instantiated varying

combinations of avatars, ranging from one to six, every

two minutes. Each avatar was assigned distinct targets and

orientations to diversify the dataset.

For each avatar, we created 17 annotation points according

to the COCO dataset. During the simulations, we collected the

projections of each annotation point on each camera, as well

as the visibility state of each point and the bounding box of

each avatar.

We adhered to the COCO standard for visibility labels,

where a value of 0 indicates that the keypoint is not labeled,

1 indicates that it is labeled but not visible, and 2 indicates

that it is visible.

We stored the annotations in a JSON format, and for

every 30 frames, we saved a JPEG file with a resolution of

1920x1080 pixels.

IV. TRANSFER LEARNING

A. Test Set

In order to compare our proposed dataset with real images

and videos of the ISS, we generated annotations on the actual

footage using the Coco annotator tool [32]. We defined the

standard 17 keypoints from the COCO dataset and manually

crafted bounding boxes for visible individuals.
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TABLE I: Quantitative results using standard frameworks

(expressed in percentages)

Synthetic dataset
AP AP50 AP75 AR AR50 AR75

Openpose 39.1 57.4 41.8 46.4 66.0 48.2
Openpifpaf 13.6 28.8 11;8 15.0 30.6 13.0
MMPose
(HRNET) 62.6 76.8 64.1 74.0 90.2 75.5

MMPose
(ViTPose)

36.8 55.7 36.1 52.9 75.4 52.5

Real footage
AP AP50 AP75 AR AR50 AR75

Openpose 24.8 33.6 24.8 40.7 52.3 41.0
Openpifpaf 32.5 50.6 32.6 51.3 71.9 53.0
MMPose
(HRNET) 50.1 65.7 52.1 55.6 69.6 57.5

MMPose
(ViTPose)

46.4 60.2 48.5 60.2 74.0 63.0

A total of 77 pictures, each containing at least one person,

were annotated. Following the annotation process, we aug-

mented the dataset by mirroring and flipping the images. As

a result, our test set comprised a total of 312 images with

resolutions ranging from 512×512 to 3000×2000 pixels.

B. Existing Frameworks Evaluation and Selection for Transfer
Learning

Initially, we evaluated different 2D pose estimation frame-

works to determine the most suitable for our use case. We

selected Openpose, Openpifpaf (using Shufflenetv2k16 trained

model), and MMPose (utilizing a bottom-up approach with

HRNET backbone and associative embedding, and a top-down

approach with ViTPose large models). Table I displays our

results for mean average precision (mAP) and mean average

recall (mAR) on both our synthetic and real sets of images

from the ISS.

Our comparison revealed that models employing MMPose

exhibited higher values for mAP and mAR when using the

bottom-up and top-down approaches, respectively. Given the

nature of our use case, which often involves occlusions that

obscure most of the astronauts, we decided to adopt the

bottom-up approach. Furthermore, training with the bottom-up

approach eliminates the need to refine both object detection

and keypoint identification independently.

C. Transfer Learning Strategy

For the transfer learning task, we utilized data collected

from our dataset. Initially, we randomly selected 90000 images

for training purposes, ensuring the exclusion of subsequent

frames to generate diverse avatar poses. Further refinement

was applied using the Openpose approach, considering an

avatar as visible only when at least 5 keypoints were present.

Additionally, we implemented the ”iscrowd” flag following

the COCO standard. This flag was assigned when the bounding

box containing the avatar was smaller than 5% of the image

area, ensuring that only images with visible avatars were

utilized.

After refining the training images, we were left with 35473

images for transfer learning. All images were resized to

512x512 pixels to maintain the dimensions of the pretrained

model.

The standard HRNET model used for the transfer learning

task consists of the backbone and 4 extra layers before its head.

Given that our transfer learning dataset is entirely composed

of virtual images, we experimented with different strategies

by freezing varying numbers of extra layers and retaining the

weights from the backbone.

Our model underwent training for 1200 epochs, with evalu-

ations conducted every 10 epochs. All parameters from the

pretrained configuration file were retained for our transfer

learning. The training process was executed on a NVIDIA

A100-PCIE-40GB GPU.

Aiming to validate our dataset against other synthetic

datasets, we generated a sample of 90,000 images using

the PEOPLESANSPEOPLE dataset. These images included

human avatars in various orientations, mimicking our approach

with our dataset. We applied identical preprocessing steps as

those used in our synthetic dataset, resulting in a total of

32,845 images for training.

D. Transfer Learning Results

We began by assessing our results with varying numbers

of frozen layers. Upon scrutinizing the training outcomes, it

became evident that the number of frozen layers influences

the quality of the results. The optimal outcomes for different

approaches are consolidated in Table II. The variations in mAP

results are approximately 2.5%.

TABLE II: Quantitative results for ablation study (expressed

in percentages)

AP Epoch
3 Frozen Layers 60.0 1180
2 Frozen Layers 59.5 590
1 Frozen Layer 59.2 940
0 Frozen Layers 58.5 590

Despite the marginal variation, we chose to employ the

optimal approach, which entailed freezing three from four

additional layers, for both our quantitative and qualitative

analyses.

To conduct a comparative analysis between our dataset

and another synthetic dataset, we utilized our generated data

from PEOPLESANSPEOPLE with the same configuration

parameters that yielded our best result. However, the model’s

performance degraded slightly, and our best result occurred at

epoch 305, which was marginally better than the performance

of the pretrained model. The resulting values for mAP and

mAR are outlined in Table III.

When comparing the obtained results with standard models,

a noticeable divergence is observed between our approach’s

performance on virtual datasets and real footage. Despite this

distinction, our model exhibits an improvement of approxi-

mately 20% for both mAP and mAR.

Furthermore, we conducted a qualitative evaluation of our

results, as illustrated in Figure 3. This qualitative analysis

1561



TABLE III: Quantitative results after transfer learning (ex-

pressed in percentages)

AP AP50 AP75 AR AR50 AR75

Model trained with
Our Synthetic

Dataset

Virtual
dataset

(1920x1080 pixels)
82.3 87.3 83.5 91.6 97.8 92.5

Virtual
dataset

(512x512 pixels)
86.1 96.1 89.9 90.5 99.2 93.3

Real
footage 60.0 79.6 64.8 66.6 84.4 70.6

Model trained with
PEOPLESANSPEOPLE

Dataset

Virtual
dataset

(1920x1080 pixels)
24.7 43.8 22.9 74.4 85.2 78.0

Virtual
dataset

(512x512 pixels)
15.6 28.8 14.1 65.3 84.3 69.1

Real
footage

52.8 69.6 55.4 59.3 74.4 61.6

provides insights into the strengths and weaknesses of the

trained model.

(a) Pose estimation with
OpenPose

(b) Pose estimation with
Openpifpaf

(c) Pose estimation with
HRNET

(d) Pose estimation with
ViTPose

(e) Pose estimation with re-
trained model

Fig. 3: Comparison pose estimation with different frameworks

and retrained model.

While ViTPose and Openpifpaf appear to identify more

keypoints, these frameworks prove less efficient in recognizing

individuals in microgravity. Upon analyzing the images, it

becomes apparent that these frameworks might incorrectly

identify more people than are actually present in the scene.

In comparing our retrained model with Openpose and

HRNET, our model performed well in identifying accurate

keypoints, surpassing the standard HRNET. Additionally, it

showed improved capability in understanding individuals in

varying orientations compared to Openpose.

V. CONCLUSION

In conclusion, the utilization of synthetic datasets has

emerged as a viable alternative for training pose estimation

models in scenarios characterized by a scarcity of available

data.

Our dataset played a pivotal role in a transfer learning

paradigm, demonstrating a significant enhancement of approx-

imately 20% in both mAP and mAR for the real footage from

the ISS. This underlines the efficacy of our synthetic dataset in

improving model performance. In comparison to the transfer

learning results obtained from the PEOPLESANSPEOPLE

synthetic dataset, our dataset achieved a superior improvement

of around 13% in both AP and AR when applied to real

footage, thereby refuting the hypothesis that simply increasing

the amount of data leads to proportional performance gains.

Furthermore, this paper provided a comprehensive compar-

ison among various frameworks and methodologies for pose

estimation. It underscored the limitations of standard models

in comprehending unconventional poses, as encountered in

microgravity scenarios. The critical evaluation of these frame-

works sheds light on the challenges that synthetic datasets,

like ours, aim to address.

As part of our future endeavors, we envision leveraging our

dataset to advance 3D pose estimation. This involves generat-

ing data in diverse contexts and utilizing the virtual environ-

ment as ground truth, providing a more comprehensive and

nuanced understanding of human poses in three-dimensional

space. This extension of our work holds promising potential

for furthering the capabilities of pose estimation models and

enhancing their applicability across a broader spectrum of

scenarios.
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